test_conv3d_transpose_layer.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest


class Conv3DTransposeTestCase(unittest.TestCase):
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    def __init__(self,
                 methodName='runTest',
                 batch_size=2,
                 spartial_shape=(8, 8, 8),
                 num_channels=6,
                 num_filters=8,
                 filter_size=3,
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=1,
                 no_bias=False,
                 data_format="NCDHW",
                 dtype="float32"):
        super(Conv3DTransposeTestCase, self).__init__(methodName)
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.num_filters = num_filters
        self.spartial_shape = spartial_shape
        self.filter_size = filter_size
        self.output_size = output_size

        self.padding = padding
        self.stride = stride
        self.dilation = dilation
        self.groups = groups
        self.no_bias = no_bias
        self.data_format = data_format
        self.dtype = dtype

    def setUp(self):
        self.channel_last = self.data_format == "NDHWC"
        if self.channel_last:
            input_shape = (self.batch_size, ) + self.spartial_shape + (
                self.num_channels, )
        else:
62 63
            input_shape = (self.batch_size,
                           self.num_channels) + self.spartial_shape
64 65 66 67 68 69 70 71
        self.input = np.random.randn(*input_shape).astype(self.dtype)

        if isinstance(self.filter_size, int):
            filter_size = [self.filter_size] * 3
        else:
            filter_size = self.filter_size
        self.weight_shape = weight_shape = (self.num_channels, self.num_filters
                                            // self.groups) + tuple(filter_size)
72 73
        self.weight = np.random.uniform(-1, 1,
                                        size=weight_shape).astype(self.dtype)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        if self.no_bias:
            self.bias = None
        else:
            self.bias = np.random.uniform(
                -1, 1, size=(self.num_filters, )).astype(self.dtype)

    def fluid_layer(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                input_shape = (-1, -1, -1, -1, self.num_channels) \
                    if self.channel_last else (-1, self.num_channels, -1, -1, -1)
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                weight_attr = I.NumpyArrayInitializer(self.weight)
                if self.bias is None:
                    bias_attr = False
                else:
                    bias_attr = I.NumpyArrayInitializer(self.bias)
                y_var = fluid.layers.conv3d_transpose(
                    x_var,
                    self.num_filters,
                    filter_size=self.filter_size,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=weight_attr,
                    bias_attr=bias_attr,
                    data_format=self.data_format)
        feed_dict = {"input": self.input}
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
        return y_np

    def functional(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                input_shape = (-1, -1, -1, -1, self.num_channels) \
                    if self.channel_last else (-1, self.num_channels, -1, -1, -1)
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
119 120 121 122 123 124 125 126 127 128 129 130 131 132
                w_var = fluid.data("weight",
                                   self.weight_shape,
                                   dtype=self.dtype)
                b_var = fluid.data("bias", (self.num_filters, ),
                                   dtype=self.dtype)
                y_var = F.conv3d_transpose(x_var,
                                           w_var,
                                           None if self.no_bias else b_var,
                                           output_size=self.output_size,
                                           padding=self.padding,
                                           stride=self.stride,
                                           dilation=self.dilation,
                                           groups=self.groups,
                                           data_format=self.data_format)
133 134 135 136 137 138 139 140 141 142
        feed_dict = {"input": self.input, "weight": self.weight}
        if self.bias is not None:
            feed_dict["bias"] = self.bias
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
        return y_np

    def paddle_nn_layer(self):
        x_var = dg.to_variable(self.input)
143 144 145 146 147 148 149 150
        conv = nn.Conv3DTranspose(self.num_channels,
                                  self.num_filters,
                                  self.filter_size,
                                  padding=self.padding,
                                  stride=self.stride,
                                  dilation=self.dilation,
                                  groups=self.groups,
                                  data_format=self.data_format)
151 152 153
        conv.weight.set_value(self.weight)
        if not self.no_bias:
            conv.bias.set_value(self.bias)
L
LielinJiang 已提交
154
        y_var = conv(x_var, self.output_size)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        y_np = y_var.numpy()
        return y_np

    def _test_equivalence(self, place):
        place = fluid.CPUPlace()
        result1 = self.fluid_layer(place)
        result2 = self.functional(place)
        with dg.guard(place):
            result3 = self.paddle_nn_layer()
        np.testing.assert_array_almost_equal(result1, result2)
        np.testing.assert_array_almost_equal(result2, result3)

    def runTest(self):
        place = fluid.CPUPlace()
        self._test_equivalence(place)

        if fluid.core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            self._test_equivalence(place)


class Conv3DTransposeErrorTestCase(Conv3DTransposeTestCase):
177

178 179 180 181 182 183 184 185
    def runTest(self):
        place = fluid.CPUPlace()
        with dg.guard(place):
            with self.assertRaises(ValueError):
                self.paddle_nn_layer()


def add_cases(suite):
L
LielinJiang 已提交
186
    suite.addTest(Conv3DTransposeTestCase(methodName='runTest'))
187
    suite.addTest(
188 189 190 191
        Conv3DTransposeTestCase(methodName='runTest',
                                stride=[1, 2, 1],
                                dilation=2,
                                no_bias=True))
192
    suite.addTest(
193 194 195 196
        Conv3DTransposeTestCase(methodName='runTest',
                                output_size=[12, 19, 12],
                                stride=[1, 2, 1],
                                dilation=2))
197
    suite.addTest(
198 199 200 201 202 203 204
        Conv3DTransposeTestCase(methodName='runTest',
                                stride=2,
                                dilation=(2, 1, 2)))
    suite.addTest(Conv3DTransposeTestCase(methodName='runTest',
                                          padding="valid"))
    suite.addTest(Conv3DTransposeTestCase(methodName='runTest',
                                          padding='valid'))
205
    suite.addTest(
206 207 208
        Conv3DTransposeTestCase(methodName='runTest',
                                filter_size=1,
                                padding=(2, 3, 1)))
209
    suite.addTest(
210 211
        Conv3DTransposeTestCase(methodName='runTest',
                                padding=[1, 2, 2, 3, 2, 1]))
212
    suite.addTest(
213 214 215
        Conv3DTransposeTestCase(methodName='runTest',
                                padding=[[0, 0], [0, 0], [2, 3], [1, 2], [2,
                                                                          1]]))
216
    suite.addTest(
217
        Conv3DTransposeTestCase(methodName='runTest', data_format="NDHWC"))
218
    suite.addTest(
219 220 221 222
        Conv3DTransposeTestCase(methodName='runTest',
                                data_format="NDHWC",
                                padding=[[0, 0], [1, 1], [2, 2], [3, 3], [0,
                                                                          0]]))
223
    suite.addTest(
224 225
        Conv3DTransposeTestCase(methodName='runTest', groups=2,
                                padding="valid"))
226
    suite.addTest(
227 228 229 230 231
        Conv3DTransposeTestCase(methodName='runTest',
                                num_filters=6,
                                num_channels=3,
                                groups=3,
                                padding="valid"))
232 233 234 235


def add_error_cases(suite):
    suite.addTest(
236 237 238
        Conv3DTransposeErrorTestCase(methodName='runTest',
                                     num_channels=5,
                                     groups=2))
239
    suite.addTest(
240 241
        Conv3DTransposeErrorTestCase(methodName='runTest',
                                     output_size="not_valid"))
242
    suite.addTest(
243 244 245 246
        Conv3DTransposeErrorTestCase(methodName='runTest',
                                     num_channels=5,
                                     groups=2,
                                     padding=[-1, 1, 3]))
247 248 249 250 251 252 253 254 255 256 257


def load_tests(loader, standard_tests, pattern):
    suite = unittest.TestSuite()
    add_cases(suite)
    add_error_cases(suite)
    return suite


if __name__ == '__main__':
    unittest.main()