test_beam_search_op.py 14.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yan Chunwei 已提交
17
import logging
18 19
from paddle.fluid.op import Operator, DynamicRecurrentOp
import paddle.fluid.core as core
Y
Yan Chunwei 已提交
20 21
import unittest
import numpy as np
22 23
import paddle.fluid as fluid
from paddle.fluid.framework import Program, program_guard
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32


def create_tensor(scope, name, np_data):
    tensor = scope.var(name).get_tensor()
    tensor.set(np_data, core.CPUPlace())
    return tensor


class BeamSearchOpTester(unittest.TestCase):
33 34
    """unittest of beam_search_op"""

Y
Yan Chunwei 已提交
35 36 37
    def setUp(self):
        self.scope = core.Scope()
        self._create_ids()
38
        self._create_pre_scores()
Y
Yan Chunwei 已提交
39 40
        self._create_scores()
        self._create_pre_ids()
P
pangyoki 已提交
41
        self.set_outputs()
42 43 44
        self.scope.var('selected_ids').get_tensor()
        self.scope.var('selected_scores').get_tensor()
        self.scope.var('parent_idx').get_tensor()
Y
Yan Chunwei 已提交
45 46

    def test_run(self):
47 48 49 50 51 52 53 54 55 56 57 58
        op = Operator('beam_search',
                      pre_ids='pre_ids',
                      pre_scores='pre_scores',
                      ids='ids',
                      scores='scores',
                      selected_ids='selected_ids',
                      selected_scores='selected_scores',
                      parent_idx='parent_idx',
                      level=0,
                      beam_size=self.beam_size,
                      end_id=0,
                      is_accumulated=self.is_accumulated)
D
dzhwinter 已提交
59
        op.run(self.scope, core.CPUPlace())
Y
Yan Chunwei 已提交
60
        selected_ids = self.scope.find_var("selected_ids").get_tensor()
61
        selected_scores = self.scope.find_var("selected_scores").get_tensor()
62
        parent_idx = self.scope.find_var("parent_idx").get_tensor()
P
pangyoki 已提交
63
        self.assertTrue(np.allclose(np.array(selected_ids), self.output_ids))
64
        self.assertTrue(
P
pangyoki 已提交
65 66
            np.allclose(np.array(selected_scores), self.output_scores))
        self.assertEqual(selected_ids.lod(), self.output_lod)
67
        self.assertTrue(
P
pangyoki 已提交
68
            np.allclose(np.array(parent_idx), self.output_parent_idx))
Y
Yan Chunwei 已提交
69 70

    def _create_pre_ids(self):
71
        np_data = np.array([[1, 2, 3, 4]], dtype='int64')
72 73 74 75 76
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)
Y
Yan Chunwei 已提交
77 78

    def _create_ids(self):
79
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
80 81
        np_data = np.array([[4, 2, 5], [2, 1, 3], [3, 5, 2], [8, 2, 1]],
                           dtype='int64')
Y
Yan Chunwei 已提交
82 83 84 85
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
86 87 88 89 90 91 92
        np_data = np.array([
            [0.5, 0.3, 0.2],
            [0.6, 0.3, 0.1],
            [0.9, 0.5, 0.1],
            [0.7, 0.5, 0.1],
        ],
                           dtype='float32')
Y
Yan Chunwei 已提交
93 94 95
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

P
pangyoki 已提交
96 97 98 99 100 101 102 103 104 105
    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([4, 2, 3, 8])[:, np.newaxis]
        self.output_scores = np.array([0.5, 0.6, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 1, 2, 3])


class BeamSearchOpTester2(BeamSearchOpTester):
106

P
pangyoki 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
122 123 124 125 126 127 128
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.1, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([2, 4, 3, 1])[:, np.newaxis]
        self.output_scores = np.array([0.9, 0.6, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 2, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 0, 2, 3])


class BeamSearchOpTester3(BeamSearchOpTester):
    # pre_id = end_id
    def _create_pre_ids(self):
        np_data = np.array([[1], [0], [0], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1], [1.2], [0.5], [0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
158 159 160 161 162 163 164
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.6, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([2, 0, 1, 8])[:, np.newaxis]
        self.output_scores = np.array([0.9, 1.2, 0.7, 0.6])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 1, 2, 2, 4]]
        self.output_parent_idx = np.array([0, 1, 3, 3])


class BeamSearchOpTester4(BeamSearchOpTester):
    # prune beam search while pre_id of in all beams is end_id
    def _create_pre_ids(self):
        np_data = np.array([[0], [0], [0], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1], [1.2], [0.5], [0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
194 195 196 197 198 199 200
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.6, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = True
        self.output_ids = np.array([1, 8])[:, np.newaxis]
        self.output_scores = np.array([0.7, 0.6])[:, np.newaxis]
        self.output_lod = [[0, 2, 4], [0, 0, 0, 0, 2]]
        self.output_parent_idx = np.array([3, 3])


class BeamSearchOpTester5(BeamSearchOpTester):
    # is_accumulated = False
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 2.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 2, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
230 231 232 233 234 235 236
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.1, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
237 238 239 240 241 242 243
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 2
        self.is_accumulated = False
        self.output_ids = np.array([7, 3, 3, 1])[:, np.newaxis]
244 245
        self.output_scores = np.array([1.50685, 0.996027, 0.194639,
                                       0.043325])[:, np.newaxis]
P
pangyoki 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        self.output_lod = [[0, 2, 4], [0, 0, 2, 3, 4]]
        self.output_parent_idx = np.array([1, 1, 2, 3])


class BeamSearchOpTester6(BeamSearchOpTester):
    # beam_size = 1
    def _create_pre_ids(self):
        np_data = np.array([[1], [2], [3], [4]], dtype='int64')
        tensor = create_tensor(self.scope, 'pre_ids', np_data)

    def _create_pre_scores(self):
        np_data = np.array([[0.1, 0.2, 0.3, 0.4]], dtype='float32')
        tensor = create_tensor(self.scope, 'pre_scores', np_data)

    def _create_ids(self):
        self.lod = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]
        np_data = np.array([[4, 2], [7, 3], [3, 5], [8, 1]], dtype='int64')
        tensor = create_tensor(self.scope, "ids", np_data)
        tensor.set_lod(self.lod)

    def _create_scores(self):
267 268 269 270 271 272 273
        np_data = np.array([
            [0.6, 0.9],
            [0.5, 0.3],
            [0.9, 0.5],
            [0.1, 0.7],
        ],
                           dtype='float32')
P
pangyoki 已提交
274 275 276 277 278 279 280 281 282 283 284
        tensor = create_tensor(self.scope, "scores", np_data)
        tensor.set_lod(self.lod)

    def set_outputs(self):
        self.beam_size = 1
        self.is_accumulated = True
        self.output_ids = np.array([2, 7, 3, 1])[:, np.newaxis]
        self.output_scores = np.array([0.9, 0.5, 0.9, 0.7])[:, np.newaxis]
        self.output_lod = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]
        self.output_parent_idx = np.array([0, 1, 2, 3])

Y
Yan Chunwei 已提交
285

286
class TestBeamSearchOpError(unittest.TestCase):
287

288 289
    def test_errors(self):
        with program_guard(Program(), Program()):
290 291 292 293 294 295 296 297
            pre_ids = fluid.data(name='pre_id',
                                 shape=[1],
                                 lod_level=2,
                                 dtype='int64')
            pre_scores = fluid.data(name='pre_scores',
                                    shape=[1],
                                    lod_level=2,
                                    dtype='float32')
298 299 300 301
            probs = fluid.data(name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=4)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
302
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
303 304 305 306 307
                axis=0)

            def test_preids_Variable():
                # the input pre_ids must be Variable
                preids_data = np.random.randint(1, 5, [5, 1]).astype("int64")
308 309 310 311 312 313
                fluid.layers.beam_search(pre_ids=preids_data,
                                         pre_scores=pre_scores,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
314 315 316 317 318 319 320

            self.assertRaises(TypeError, test_preids_Variable)

            def test_prescores_Variable():
                # the input pre_scores must be Variable
                prescores_data = np.random.uniform(1, 5,
                                                   [5, 1]).astype("float32")
321 322 323 324 325 326
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=prescores_data,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
327 328 329 330 331 332

            self.assertRaises(TypeError, test_prescores_Variable)

            def test_ids_Variable():
                # the input ids must be Variable or None
                ids_data = np.random.randint(1, 5, [5, 1]).astype("int64")
333 334 335 336 337 338
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=pre_scores,
                                         ids=ids_data,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
339 340 341 342 343 344

            self.assertRaises(TypeError, test_ids_Variable)

            def test_scores_Variable():
                # the input scores must be Variable
                scores_data = np.random.uniform(1, 5, [5, 1]).astype("float32")
345 346 347 348 349 350
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=pre_scores,
                                         ids=topk_indices,
                                         scores=scores_data,
                                         beam_size=4,
                                         end_id=1)
351 352 353 354 355

            self.assertRaises(TypeError, test_scores_Variable)

            def test_preids_dtype():
                # the dtype of input pre_ids must be int64
356 357 358 359 360 361 362 363 364 365
                preids_type_data = fluid.data(name='preids_type_data',
                                              shape=[1],
                                              lod_level=2,
                                              dtype='float32')
                fluid.layers.beam_search(pre_ids=preids_type_data,
                                         pre_scores=pre_scores,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
366 367 368 369 370

            self.assertRaises(TypeError, test_preids_dtype)

            def test_prescores_dtype():
                # the dtype of input pre_scores must be float32
371 372 373 374 375 376 377 378 379 380
                prescores_type_data = fluid.data(name='prescores_type_data',
                                                 shape=[1],
                                                 lod_level=2,
                                                 dtype='int64')
                fluid.layers.beam_search(pre_ids=pre_ids,
                                         pre_scores=prescores_type_data,
                                         ids=topk_indices,
                                         scores=accu_scores,
                                         beam_size=4,
                                         end_id=1)
381 382 383 384

            self.assertRaises(TypeError, test_prescores_dtype)


Y
Yan Chunwei 已提交
385 386
if __name__ == '__main__':
    unittest.main()