test_adagrad_op.py 6.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21
from op_test import OpTest
Q
QI JUN 已提交
22
import math
H
hong 已提交
23
import paddle
24 25


K
Kexin Zhao 已提交
26 27 28 29
class TestAdagradOp1(OpTest):
    ''' Test Adagrad operator with explicit attributes
    '''

30 31 32 33 34 35
    def setUp(self):
        self.op_type = "adagrad"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")
K
Kexin Zhao 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        lr = 0.01
        epsilon = 1e-8

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
            'LearningRate': np.array([lr]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon}

        moment_out = moment + grad * grad
        param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)

        self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}

    def test_check_output(self):
        self.check_output()


class TestAdagradOp2(OpTest):
    ''' Test Adagrad operator with default attributes
    '''
60

K
Kexin Zhao 已提交
61 62 63 64 65 66 67
    def setUp(self):
        self.op_type = "adagrad"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")
        lr = 0.01
68 69
        epsilon = 1e-6

K
Kexin Zhao 已提交
70 71 72 73 74 75
        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
            'LearningRate': np.array([lr]).astype("float32")
        }
76

K
Kexin Zhao 已提交
77
        self.attrs = {'epsilon': epsilon}
78 79

        moment_out = moment + grad * grad
80
        param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
81

K
Kexin Zhao 已提交
82
        self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
83 84 85 86 87

    def test_check_output(self):
        self.check_output()


Q
QI JUN 已提交
88
class TestSparseAdagradOp(unittest.TestCase):
89

Q
QI JUN 已提交
90 91 92
    def check_with_place(self, place):
        scope = core.Scope()

93
        # create and initialize Grad Variable
Q
QI JUN 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        height = 10
        rows = [0, 4, 7, 4]
        row_numel = 12

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and initialize moment Variable
        moment = scope.var('Moment').get_tensor()
        moment_np_array = np.full((height, row_numel), 2.0).astype("float32")
        moment.set(moment_np_array, place)

        # create and run sgd operator
124 125 126 127 128 129 130 131
        adagrad_op = Operator("adagrad",
                              Param='Param',
                              Grad='Grad',
                              ParamOut='Param',
                              Moment='Moment',
                              MomentOut='Moment',
                              LearningRate='LearningRate',
                              epsilon=2.0)
Q
QI JUN 已提交
132

D
dzhwinter 已提交
133
        adagrad_op.run(scope, place)
Q
QI JUN 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

        # get and compare moment result
        moment_result_array = np.array(moment)

        self.assertAlmostEqual(6.0, moment_result_array[rows[0], 0])
        self.assertAlmostEqual(3.0, moment_result_array[rows[0], 2])
        self.assertAlmostEqual(2.0, moment_result_array[1, 0])
        # 2.0 + (1.0 + 1.0)^2
        self.assertAlmostEqual(6.0, moment_result_array[rows[1], 10])
        self.assertAlmostEqual(6.0, moment_result_array[rows[3], 4])

        self.assertAlmostEqual(2.0, moment_result_array[5, 8])
        self.assertAlmostEqual(3.0, moment_result_array[rows[2], 1])
        self.assertAlmostEqual(18.0, moment_result_array[rows[2], 8])

        # get and compare param result
        result_array = np.array(param)

        def get_out(param, lr, grad, m, epsilon):
            return param - lr * grad / (math.sqrt(m) + epsilon)

155 156 157 158 159 160 161 162 163
        self.assertAlmostEqual(get_out(5.0, 2.0, 2.0, 6.0, 2.0),
                               result_array[rows[0], 0],
                               places=5)
        self.assertAlmostEqual(get_out(5.0, 2.0, 1.0, 3.0, 2.0),
                               result_array[rows[0], 2],
                               places=5)
        self.assertAlmostEqual(get_out(5.0, 2.0, 0.0, 2.0, 2.0),
                               result_array[1, 0],
                               places=5)
Q
QI JUN 已提交
164 165 166

        # grad_merge = 1.0 + 1.0
        # m = 6.0
167 168 169 170 171 172 173 174 175 176 177 178 179
        self.assertAlmostEqual(get_out(5.0, 2.0, 2.0, 6.0, 2.0),
                               result_array[rows[1], 10],
                               places=5)

        self.assertAlmostEqual(get_out(5.0, 2.0, 0.0, 2.0, 2.0),
                               result_array[5, 8],
                               places=5)
        self.assertAlmostEqual(get_out(5.0, 2.0, 1.0, 3.0, 2.0),
                               result_array[rows[2], 1],
                               places=5)
        self.assertAlmostEqual(get_out(5.0, 2.0, 4.0, 18.0, 2.0),
                               result_array[rows[2], 8],
                               places=5)
Q
QI JUN 已提交
180 181 182

    def test_sparse_adagrad(self):
        places = [core.CPUPlace()]
183
        if core.is_compiled_with_cuda():
D
dzhwinter 已提交
184
            places.append(core.CUDAPlace(0))
Q
QI JUN 已提交
185 186 187 188
        for place in places:
            self.check_with_place(place)


189
if __name__ == "__main__":
H
hong 已提交
190
    paddle.enable_static()
191
    unittest.main()