test_sequence_mask.py 5.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sneaxiy 已提交
15
import paddle.fluid as fluid
16
from paddle.fluid.framework import convert_np_dtype_to_dtype_, Program, program_guard
S
sneaxiy 已提交
17
import paddle.fluid.core as core
Q
qingqing01 已提交
18 19 20
import numpy as np
import copy
import unittest
21
import sys
22

23 24
sys.path.append("../")
from op_test import OpTest
Q
qingqing01 已提交
25 26 27


class SequenceMaskTestBase(OpTest):
28

Q
qingqing01 已提交
29 30
    def initDefaultParameters(self):
        self.op_type = 'sequence_mask'
S
sneaxiy 已提交
31
        self.maxlen = 10
Q
qingqing01 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
        self.mask_dtype = 'int64'
        self.x = [[0, 3, 4], [5, 7, 9]]

    def initParameters(self):
        pass

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        if not isinstance(self.x, np.ndarray):
            self.x = np.array(self.x)

        self.inputs = {'X': self.x}
        self.outputs = {'Y': self.calc_ground_truth_mask()}
        self.attrs = {
S
sneaxiy 已提交
47
            'maxlen': self.maxlen,
Q
qingqing01 已提交
48 49 50 51
            'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype)
        }

    def calc_ground_truth_mask(self):
S
sneaxiy 已提交
52 53
        maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen
        shape = self.x.shape + (maxlen, )
54 55 56 57 58 59 60
        index_broadcast = np.broadcast_to(np.reshape(
            range(maxlen), newshape=[1] * self.x.ndim + [-1]),
                                          shape=shape)
        x_broadcast = np.broadcast_to(np.reshape(self.x,
                                                 newshape=self.x.shape +
                                                 (-1, )),
                                      shape=shape)
Q
qingqing01 已提交
61 62 63 64 65 66 67
        return (index_broadcast < x_broadcast).astype(self.mask_dtype)

    def test_check_output(self):
        self.check_output()


class SequenceMaskTest1(SequenceMaskTestBase):
68

Q
qingqing01 已提交
69 70 71 72 73
    def initParameters(self):
        self.mask_dtype = 'bool'


class SequenceMaskTest2(SequenceMaskTestBase):
74

Q
qingqing01 已提交
75 76 77 78 79
    def initParameters(self):
        self.mask_dtype = 'uint8'


class SequenceMaskTest3(SequenceMaskTestBase):
80

Q
qingqing01 已提交
81 82 83 84 85
    def initParameters(self):
        self.mask_dtype = 'int32'


class SequenceMaskTest4(SequenceMaskTestBase):
86

Q
qingqing01 已提交
87 88 89 90 91
    def initParameters(self):
        self.mask_dtype = 'float32'


class SequenceMaskTest5(SequenceMaskTestBase):
92

Q
qingqing01 已提交
93 94 95 96
    def initParameters(self):
        self.mask_dtype = 'float64'


S
sneaxiy 已提交
97
class SequenceMaskTest6(SequenceMaskTestBase):
98

S
sneaxiy 已提交
99 100 101 102
    def initParameters(self):
        self.maxlen = -1


103
class SequenceMaskTestBase_tensor_attr(OpTest):
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def initDefaultParameters(self):
        self.op_type = 'sequence_mask'
        self.maxlen = 10
        self.maxlen_tensor = np.ones((1), 'int32') * 10
        self.mask_dtype = 'int64'
        self.x = [[0, 3, 4], [5, 7, 9]]

    def initParameters(self):
        pass

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        if not isinstance(self.x, np.ndarray):
            self.x = np.array(self.x)

        self.inputs = {'X': self.x, 'MaxLenTensor': self.maxlen_tensor}
        self.outputs = {'Y': self.calc_ground_truth_mask()}
        self.attrs = {'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype)}

    def calc_ground_truth_mask(self):
        maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen
        shape = self.x.shape + (maxlen, )
128 129 130 131 132 133 134
        index_broadcast = np.broadcast_to(np.reshape(
            range(maxlen), newshape=[1] * self.x.ndim + [-1]),
                                          shape=shape)
        x_broadcast = np.broadcast_to(np.reshape(self.x,
                                                 newshape=self.x.shape +
                                                 (-1, )),
                                      shape=shape)
135 136 137 138 139 140 141
        return (index_broadcast < x_broadcast).astype(self.mask_dtype)

    def test_check_output(self):
        self.check_output()


class SequenceMaskTest1_tensor_attr(SequenceMaskTestBase_tensor_attr):
142

143 144 145 146 147
    def initParameters(self):
        self.mask_dtype = 'bool'


class SequenceMaskTest2_tensor_attr(SequenceMaskTestBase_tensor_attr):
148

149 150 151 152 153
    def initParameters(self):
        self.mask_dtype = 'uint8'


class SequenceMaskTest3_tensor_attr(SequenceMaskTestBase_tensor_attr):
154

155 156 157 158 159
    def initParameters(self):
        self.mask_dtype = 'int32'


class SequenceMaskTest4_tensor_attr(SequenceMaskTestBase_tensor_attr):
160

161 162 163 164 165
    def initParameters(self):
        self.mask_dtype = 'float32'


class SequenceMaskTest5_tensor_attr(SequenceMaskTestBase_tensor_attr):
166

167 168 169 170
    def initParameters(self):
        self.mask_dtype = 'float64'


171
class TestSequenceMaskOpError(unittest.TestCase):
172

173 174 175 176 177 178 179 180 181 182 183
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.uniform(1, 5, [4]).astype("float32")

            def test_Variable():
                # the input must be Variable
                fluid.layers.sequence_mask(input_data, maxlen=4)

            self.assertRaises(TypeError, test_Variable)


Q
qingqing01 已提交
184 185
if __name__ == '__main__':
    unittest.main()