test_sequence_conv.py 9.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18 19
import unittest
import numpy as np
import random
20
import sys
21

22
sys.path.append("../")
23
from op_test import OpTest
C
chengduoZH 已提交
24 25


26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
def seqconv(x,
            lod,
            filter,
            context_length,
            context_start,
            padding_trainable=False,
            padding_data=None):
    [T, M] = x.shape
    col = np.zeros((T, context_length * M)).astype('float32')
    offset = [0]
    for seq_len in lod[0]:
        offset.append(offset[-1] + seq_len)
    begin_pad = np.max([0, -context_start])
    for i in range(len(offset) - 1):
        for j in range(context_length):
            in_begin = offset[i] + context_start + j
            in_end = offset[i + 1] + context_start + j
            out_begin = offset[i]
            out_end = offset[i + 1]
            if in_begin < offset[i]:
                pad_size = np.min(
                    [offset[i] - in_begin, offset[i + 1] - offset[i]])
                if padding_trainable:
                    sub_w = padding_data[j:j + pad_size, :]
50 51
                    col[offset[i]:offset[i] + pad_size,
                        j * M:(j + 1) * M] = sub_w
52 53 54 55 56 57 58 59 60 61
                out_begin = offset[i] + pad_size
                in_begin = offset[i]

            if in_end > offset[i + 1]:
                pad_size = np.min(
                    [in_end - offset[i + 1], offset[i + 1] - offset[i]])
                if padding_trainable:
                    sub_w = padding_data[begin_pad + context_start + j -
                                         pad_size:begin_pad + context_start +
                                         j, :]
62 63
                    col[offset[i + 1] - pad_size:offset[i + 1],
                        j * M:(j + 1) * M] = sub_w
64 65 66 67 68 69 70 71 72
                in_end = offset[i + 1]
                out_end = offset[i + 1] - pad_size
            if in_end <= in_begin:
                continue
            in_sub = x[in_begin:in_end, :]
            col[out_begin:out_end, j * M:(j + 1) * M] += in_sub
    return np.dot(col, filter)


C
chengduoZH 已提交
73
class TestSeqProject(OpTest):
74

C
chengduoZH 已提交
75 76 77 78 79 80 81
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_conv'

        if self.context_length == 1 \
                and self.context_start == 0 \
                and self.padding_trainable:
82
            print("If context_start is 0 " \
C
chengduoZH 已提交
83
                  "and context_length is 1," \
84
                  " padding_trainable should be false.")
C
chengduoZH 已提交
85 86 87
            return

        # one level, batch size
88 89
        x = np.random.uniform(
            0.1, 1, [self.input_size[0], self.input_size[1]]).astype('float32')
C
chengduoZH 已提交
90 91 92
        w = np.random.uniform(0.1, 1, [
            self.context_length * self.input_size[1], self.output_represention
        ]).astype('float32')
C
chengduoZH 已提交
93 94 95 96 97 98 99

        begin_pad = np.max([0, -self.context_start])
        end_pad = np.max([0, self.context_start + self.context_length - 1])
        total_pad = begin_pad + end_pad
        padding_data = np.random.uniform(
            0.1, 1, [total_pad, self.input_size[1]]).astype('float32')
        self.pad_data = padding_data
C
chengduoZH 已提交
100 101
        self.inputs = {
            'X': (x, self.lod),
C
chengduoZH 已提交
102
            'Filter': w,
C
chengduoZH 已提交
103
        }
C
chengduoZH 已提交
104 105 106 107 108 109 110 111 112 113
        self.inputs_val = ['X', 'Filter']
        self.inputs_val_no_x = ['Filter']
        self.inputs_val_no_f = ['X']

        if total_pad != 0:
            self.inputs['PaddingData'] = padding_data
            self.inputs_val = ['X', 'PaddingData', 'Filter']
            self.inputs_val_no_x = ['PaddingData', 'Filter']
            self.inputs_val_no_f = ['PaddingData', 'X']

C
chengduoZH 已提交
114
        self.attrs = {
C
chengduoZH 已提交
115 116 117 118
            'contextStart': self.context_start,
            'contextLength': self.context_length,
            'paddingTrainable': self.padding_trainable,
            'contextStride': self.context_stride
C
chengduoZH 已提交
119
        }
120 121
        out = seqconv(x, self.lod, w, self.context_length, self.context_start,
                      self.padding_trainable, self.pad_data)
C
chengduoZH 已提交
122 123 124 125 126 127 128
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.padding_trainable:
129 130 131
            self.check_grad(set(self.inputs_val),
                            'Out',
                            max_relative_error=0.05)
C
chengduoZH 已提交
132 133

    def test_check_grad_input(self):
134 135 136 137
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.05,
                        no_grad_set=set(self.inputs_val_no_x))
C
chengduoZH 已提交
138 139 140

    def test_check_grad_padding_data(self):
        if self.padding_trainable:
141 142 143
            self.check_grad(['PaddingData'],
                            'Out',
                            no_grad_set=set(['X', 'Filter']))
C
chengduoZH 已提交
144 145

    def test_check_grad_Filter(self):
146 147 148 149
        self.check_grad(['Filter'],
                        'Out',
                        max_relative_error=0.05,
                        no_grad_set=set(self.inputs_val_no_f))
C
chengduoZH 已提交
150

C
chengduoZH 已提交
151
    def test_check_grad_input_filter(self):
C
chengduoZH 已提交
152
        if self.padding_trainable:
153 154 155 156
            self.check_grad(['X', 'Filter'],
                            'Out',
                            max_relative_error=0.05,
                            no_grad_set=set(['PaddingData']))
C
chengduoZH 已提交
157 158 159

    def test_check_grad_padding_input(self):
        if self.padding_trainable:
160 161 162 163
            self.check_grad(self.inputs_val_no_f,
                            'Out',
                            max_relative_error=0.05,
                            no_grad_set=set(['Filter']))
C
chengduoZH 已提交
164 165 166

    def test_check_grad_padding_filter(self):
        if self.padding_trainable:
167 168 169 170
            self.check_grad(self.inputs_val_no_x,
                            'Out',
                            max_relative_error=0.05,
                            no_grad_set=set(['X']))
C
chengduoZH 已提交
171

C
chengduoZH 已提交
172 173 174 175 176 177 178 179
    def init_test_case(self):
        self.input_row = 11
        self.context_start = 0
        self.context_length = 1
        self.padding_trainable = False
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
180 181 182 183 184
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
185
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
186 187 188


class TestSeqProjectCase1(TestSeqProject):
189

C
chengduoZH 已提交
190 191 192 193 194 195 196
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

Z
zhupengyang 已提交
197
        self.input_size = [self.input_row, 50]
198 199 200 201 202
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
203
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
204 205


206
class TestSeqProjectCase2Len0(TestSeqProject):
207

208 209 210 211 212 213 214
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

Z
zhupengyang 已提交
215
        self.input_size = [self.input_row, 50]
216 217 218 219 220 221 222 223 224
        offset_lod = [[0, 0, 4, 5, 5, 8, self.input_row, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
        self.output_represention = 8  # output feature size


class TestSeqProjectCase3(TestSeqProject):
225

C
chengduoZH 已提交
226 227 228 229 230 231 232
    def init_test_case(self):
        self.input_row = 25
        self.context_start = 2
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

Z
zhupengyang 已提交
233
        self.input_size = [self.input_row, 25]
234
        idx = list(range(self.input_size[0]))
C
chengduoZH 已提交
235
        del idx[0]
236 237 238 239 240 241
        offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
                      [self.input_size[0]]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
242
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
243 244


245
class TestSeqConvApi(unittest.TestCase):
246

247 248 249 250
    def test_api(self):
        import paddle.fluid as fluid

        x = fluid.layers.data('x', shape=[32], lod_level=1)
251 252 253 254
        y = fluid.layers.sequence_conv(input=x,
                                       num_filters=2,
                                       filter_size=3,
                                       padding_start=None)
255 256 257 258 259 260 261 262 263

        place = fluid.CPUPlace()
        x_tensor = fluid.create_lod_tensor(
            np.random.rand(10, 32).astype("float32"), [[2, 3, 1, 4]], place)
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        ret = exe.run(feed={'x': x_tensor}, fetch_list=[y], return_numpy=False)


C
chengduoZH 已提交
264 265
if __name__ == '__main__':
    unittest.main()