stack_grad_kernel.cu 4.9 KB
Newer Older
C
csy0225 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/stack_grad_kernel.h"

#include "paddle/fluid/memory/memory.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename IntType>
__global__ void UnStackHelperCUDAKernel(const T* __restrict__ input,
                                        int pre_dim_size,
                                        int split_dim_size,
                                        int suf_dim_size,
                                        int num_split,
                                        T** output_ptrs) {
  assert(blockDim.y == 1);
  assert(blockDim.z == 1);
  // In this case they are equal
  assert(split_dim_size % num_split == 0);

  IntType size = pre_dim_size * split_dim_size * suf_dim_size;
  IntType each_dim_size = split_dim_size / num_split;

  for (IntType offset = blockIdx.x * blockDim.x + threadIdx.x; offset < size;
       offset += blockDim.x * gridDim.x) {
    IntType i = offset / (split_dim_size * suf_dim_size);
    IntType j = (offset % (split_dim_size * suf_dim_size)) / suf_dim_size;
    IntType k = offset % suf_dim_size;

    T* output = output_ptrs[j / each_dim_size];
    if (output == nullptr) {
      return;
    }
    IntType output_ind = i * each_dim_size * suf_dim_size +
                         (j % each_dim_size) * suf_dim_size + k;
    *(output + output_ind) = input[offset];
  }
}

template <typename T, typename Context>
void StackGradKernel(const Context& dev_ctx,
                     const DenseTensor& out,
                     int axis,
                     std::vector<DenseTensor*> x_grad) {
  if (axis < 0) axis += out.dims().size();

  int n = out.dims()[axis];
  PADDLE_ENFORCE_EQ(n,
                    x_grad.size(),
                    phi::errors::InvalidArgument(
                        "Output x_grad size should be equal to n, but"
                        " received n is:%d x_grad size is:%d.",
                        n,
                        x_grad.size()));

  // x_grad is output, so save each data address, then copy each dy into dx_data
  std::vector<T*> outputs(n);
  for (size_t j = 0; j < x_grad.size(); ++j) {
    if (x_grad[j] == nullptr) {
      outputs[j] = nullptr;
      continue;
    }
    if (x_grad[j]->numel() != 0UL) {
      T* ptr = dev_ctx.template Alloc<T>(x_grad[j]);
      outputs[j] = ptr;
    } else {
      outputs[j] = nullptr;
    }
  }
  auto dy_data = out.data<T>();
  // each x_grad should have same shape
  int dy_pre = 1, dy_suf = 1;
  auto dy_dims = out.dims();
  int split_dim = n;
  for (int i = 0; i < axis; ++i) {
    dy_pre *= dy_dims[i];
  }
  dy_suf = out.numel() / (split_dim * dy_pre);

  auto tmp_out_data =
      paddle::memory::Alloc(dev_ctx, outputs.size() * sizeof(T*));
  paddle::memory::Copy(dev_ctx.GetPlace(),
                       tmp_out_data->ptr(),
                       phi::CPUPlace(),
                       reinterpret_cast<void*>(outputs.data()),
                       outputs.size() * sizeof(T*),
                       dev_ctx.stream());

  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(
      dev_ctx, dy_pre * split_dim * dy_suf);

  if (out.numel() < std::numeric_limits<int32_t>::max()) {
    UnStackHelperCUDAKernel<T, int32_t><<<config.block_per_grid.x,
                                          config.thread_per_block.x,
                                          0,
                                          dev_ctx.stream()>>>(
        dy_data,
        dy_pre,
        split_dim,
        dy_suf,
        split_dim,
        reinterpret_cast<T**>(tmp_out_data->ptr()));
  } else {
    UnStackHelperCUDAKernel<T, int64_t><<<config.block_per_grid.x,
                                          config.thread_per_block.x,
                                          0,
                                          dev_ctx.stream()>>>(
        dy_data,
        dy_pre,
        split_dim,
        dy_suf,
        split_dim,
        reinterpret_cast<T**>(tmp_out_data->ptr()));
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(stack_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::StackGradKernel,
                   float,
                   double,
                   int64_t,
                   int,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}