deformable_conv_grad_kernel.cu 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/deformable_conv_grad_kernel.h"

#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/deformable_conv_grad_kernel_impl.h"

namespace phi {

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaximumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaximumNumBlocks);
}

template <typename T>
__global__ void ModulatedDeformableCol2imGpuKernel(
    const int nthreads,
    const T* data_col,
    const T* data_offset,
    const T* data_mask,
    const int channels,
    const int height,
    const int width,
    const int kernel_h,
    const int kernel_w,
    const int pad_h,
    const int pad_w,
    const int stride_h,
    const int stride_w,
    const int dilation_h,
    const int dilation_w,
    const int channel_per_deformable_group,
    const int batch_size,
    const int deformable_group,
    const int height_col,
    const int width_col,
    T* grad_im) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t thread = index; thread < nthreads; thread += offset) {
    const int j = (thread / width_col / height_col / batch_size) % kernel_w;
    const int i =
        (thread / width_col / height_col / batch_size / kernel_w) % kernel_h;
    const int c =
        thread / width_col / height_col / batch_size / kernel_w / kernel_h;

    const int deformable_group_index = c / channel_per_deformable_group;

    int w_out = thread % width_col;
    int h_out = (thread / width_col) % height_col;
    int b = (thread / width_col / height_col) % batch_size;
    int w_in = w_out * stride_w - pad_w;
    int h_in = h_out * stride_h - pad_h;

    const T* data_offset_ptr = data_offset +
                               (b * deformable_group + deformable_group_index) *
                                   2 * kernel_h * kernel_w * height_col *
                                   width_col;
    const int data_offset_h_ptr =
        ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
    const int data_offset_w_ptr =
        ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
    const int data_mask_hw_ptr =
        ((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
    const T offset_h = data_offset_ptr[data_offset_h_ptr];
    const T offset_w = data_offset_ptr[data_offset_w_ptr];
    const T cur_inv_h_data = h_in + i * dilation_h + offset_h;
    const T cur_inv_w_data = w_in + j * dilation_w + offset_w;

    T cur_top_grad = data_col[thread];
    if (data_mask) {
      const T* data_mask_ptr = data_mask +
                               (b * deformable_group + deformable_group_index) *
                                   kernel_h * kernel_w * height_col * width_col;
      const T mask = data_mask_ptr[data_mask_hw_ptr];
      cur_top_grad *= mask;
    }
    const int cur_h = static_cast<int>(cur_inv_h_data);
    const int cur_w = static_cast<int>(cur_inv_w_data);
    for (int dy = -2; dy <= 2; dy++) {
      for (int dx = -2; dx <= 2; dx++) {
        if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
            cur_w + dx < width && abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
            abs(cur_inv_w_data - (cur_w + dx)) < 1) {
          int cur_bottom_grad_pos =
              ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
          T weight = DmcnGetGradientWeight(cur_inv_h_data,
                                           cur_inv_w_data,
                                           cur_h + dy,
                                           cur_w + dx,
                                           height,
                                           width);

          paddle::platform::CudaAtomicAdd(grad_im + cur_bottom_grad_pos,
                                          weight * cur_top_grad);
        }
      }
    }
  }
}

template <typename T, typename Context>
void ModulatedDeformableCol2im(const Context& dev_ctx,
                               const T* data_col,
                               const T* data_offset,
                               const T* data_mask,
                               const std::vector<int64_t>& im_shape,
                               const std::vector<int64_t>& col_shape,
                               const std::vector<int64_t>& kernel_shape,
                               const std::vector<int>& pad,
                               const std::vector<int>& stride,
                               const std::vector<int>& dilation,
                               const int deformable_group,
                               T* grad_im) {
  int channel_per_deformable_group = im_shape[0] / deformable_group;
  int num_kernels = col_shape[0] * col_shape[1] * col_shape[2] * col_shape[3];
  int blocks = NumBlocks(num_kernels);
  int threads = kNumCUDAThreads;

  ModulatedDeformableCol2imGpuKernel<
      T><<<blocks, threads, 0, dev_ctx.stream()>>>(num_kernels,
                                                   data_col,
                                                   data_offset,
                                                   data_mask,
                                                   im_shape[0],
                                                   im_shape[1],
                                                   im_shape[2],
                                                   kernel_shape[2],
                                                   kernel_shape[3],
                                                   pad[0],
                                                   pad[1],
                                                   stride[0],
                                                   stride[1],
                                                   dilation[0],
                                                   dilation[1],
                                                   channel_per_deformable_group,
                                                   col_shape[1],
                                                   deformable_group,
                                                   col_shape[2],
                                                   col_shape[3],
                                                   grad_im);
}

template <typename T>
__global__ void ModulatedDeformableCol2imCoordGpuKernel(
    const int nthreads,
    const T* data_col,
    const T* data_im,
    const T* data_offset,
    const T* data_mask,
    const int channels,
    const int height,
    const int width,
    const int kernel_h,
    const int kernel_w,
    const int pad_h,
    const int pad_w,
    const int stride_h,
    const int stride_w,
    const int dilation_h,
    const int dilation_w,
    const int channel_per_deformable_group,
    const int batch_size,
    const int offset_channels,
    const int deformable_group,
    const int height_col,
    const int width_col,
    T* grad_offset,
    T* grad_mask) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
    T val = 0, mval = 0;
    const int w = i % width_col;
    const int h = (i / width_col) % height_col;
    const int c = (i / width_col / height_col) % offset_channels;
    const int b = (i / width_col / height_col) / offset_channels;

    const int deformable_group_index = c / (2 * kernel_h * kernel_w);
    const int col_step = kernel_h * kernel_w;
    int cnt = 0;
    const T* data_col_ptr = data_col +
                            deformable_group_index *
                                channel_per_deformable_group * batch_size *
                                width_col * height_col;
    const T* data_im_ptr = data_im +
                           (b * deformable_group + deformable_group_index) *
                               channel_per_deformable_group / kernel_h /
                               kernel_w * height * width;
    const T* data_offset_ptr = data_offset +
                               (b * deformable_group + deformable_group_index) *
                                   2 * kernel_h * kernel_w * height_col *
                                   width_col;
    const T* data_mask_ptr =
        data_mask
            ? data_mask +
                  (b * deformable_group + deformable_group_index) * kernel_h *
                      kernel_w * height_col * width_col
            : nullptr;

    const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;

    for (int col_c = offset_c / 2; col_c < channel_per_deformable_group;
         col_c += col_step) {
      const int col_pos =
          (((col_c * batch_size + b) * height_col) + h) * width_col + w;
      const int bp_dir = offset_c % 2;

      int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
      int i =
          (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
      int w_out = col_pos % width_col;
      int h_out = (col_pos / width_col) % height_col;
      int w_in = w_out * stride_w - pad_w;
      int h_in = h_out * stride_h - pad_h;
      const int data_offset_h_ptr =
          (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
      const int data_offset_w_ptr =
          (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
           w_out);
      const T offset_h = data_offset_ptr[data_offset_h_ptr];
      const T offset_w = data_offset_ptr[data_offset_w_ptr];
      T inv_h = h_in + i * dilation_h + offset_h;
      T inv_w = w_in + j * dilation_w + offset_w;
      if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width) {
        inv_h = inv_w = -2;
      } else {
        mval += data_col_ptr[col_pos] *
                funcs::DmcnIm2colBilinear(data_im_ptr + cnt * height * width,
                                          width,
                                          height,
                                          width,
                                          inv_h,
                                          inv_w);
      }
      const T weight =
          DmcnGetCoordinateWeight(inv_h,
                                  inv_w,
                                  height,
                                  width,
                                  data_im_ptr + cnt * height * width,
                                  width,
                                  bp_dir);
      if (data_mask_ptr) {
        const int data_mask_hw_ptr =
            (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
        const T mask = data_mask_ptr[data_mask_hw_ptr];
        val += weight * data_col_ptr[col_pos] * mask;
      } else {
        val += weight * data_col_ptr[col_pos];
      }
      cnt += 1;
    }
    grad_offset[i] = val;
    if (grad_mask && offset_c % 2 == 0)
      grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h *
                      kernel_w +
                  offset_c / 2) *
                     height_col +
                 h) *
                    width_col +
                w] = mval;
  }
}

template <typename T, typename Context>
void ModulatedDeformableCol2imCoord(const Context& dev_ctx,
                                    const T* data_col,
                                    const T* data_im,
                                    const T* data_offset,
                                    const T* data_mask,
                                    const std::vector<int64_t>& im_shape,
                                    const std::vector<int64_t>& col_shape,
                                    const std::vector<int64_t>& kernel_shape,
                                    const std::vector<int>& paddings,
                                    const std::vector<int>& strides,
                                    const std::vector<int>& dilations,
                                    const int deformable_groups,
                                    T* grad_offset,
                                    T* grad_mask) {
  int num_kernels = 2 * kernel_shape[2] * kernel_shape[3] * col_shape[1] *
                    col_shape[2] * col_shape[3] * deformable_groups;
  int channel_per_deformable_group = col_shape[0] / deformable_groups;
  int blocks = NumBlocks(num_kernels);
  int threads = kNumCUDAThreads;

  ModulatedDeformableCol2imCoordGpuKernel<
      T><<<blocks, threads, 0, dev_ctx.stream()>>>(
      num_kernels,
      data_col,
      data_im,
      data_offset,
      data_mask,
      im_shape[0],
      im_shape[1],
      im_shape[2],
      kernel_shape[2],
      kernel_shape[3],
      paddings[0],
      paddings[1],
      strides[0],
      strides[1],
      dilations[0],
      dilations[1],
      channel_per_deformable_group,
      col_shape[1],
      2 * kernel_shape[2] * kernel_shape[3] * deformable_groups,
      deformable_groups,
      col_shape[2],
      col_shape[3],
      grad_offset,
      grad_mask);
}

template <typename T>
__global__ void FilterGradAddupGpuKernel(const int nthreads,
                                         const int n,
                                         const int height,
                                         const int width,
                                         const T* dweight_3d,
                                         T* filter_grad) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
    filter_grad[i] = filter_grad[i] + dweight_3d[i];
  }
}

template <typename T, typename Context>
void FilterGradAddup(const Context& dev_ctx,
                     const int nthreads,
                     const int n,
                     const int height,
                     const int width,
                     const T* dweight_3d,
                     T* filter_grad) {
  FilterGradAddupGpuKernel<
      T><<<NumBlocks(nthreads), kNumCUDAThreads, 0, dev_ctx.stream()>>>(
      nthreads, n, height, width, dweight_3d, filter_grad);
}

}  // namespace phi

PD_REGISTER_KERNEL(deformable_conv_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::DeformableConvGradKernel,
                   float,
                   double) {}