gru_cpu_kernel.h 35.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <type_traits>
17
#include "paddle/fluid/framework/eigen.h"
18
#include "paddle/phi/kernels/funcs/activation_functor.h"
F
Feiyu Chan 已提交
19 20
#include "paddle/phi/kernels/funcs/detail/activation_functions.h"
#include "paddle/phi/kernels/funcs/gru_compute.h"
G
guosheng 已提交
21

F
Feiyu Chan 已提交
22 23
namespace phi {
namespace funcs {
G
guosheng 已提交
24
namespace detail {
25
using Array1 = Eigen::DSizes<int64_t, 1>;
F
Feiyu Chan 已提交
26 27
template <typename T,
          int MajorType = Eigen::RowMajor,
28
          typename IndexType = Eigen::DenseIndex>
F
Feiyu Chan 已提交
29
using EigenVector = paddle::framework::EigenVector<T, MajorType, IndexType>;
G
guosheng 已提交
30

31
#if !defined(__NVCC__) && !defined(__HIPCC___)  // @{ Group for GRU CPU
G
guosheng 已提交
32
template <class OpResetOutput, typename T>
F
Feiyu Chan 已提交
33 34 35 36 37 38 39 40
void hl_naive_gru_forward_reset_output(OpResetOutput op_reset_output,
                                       T *gate_value,
                                       T *reset_output_value,
                                       const T *prev_output_value,
                                       int frame_size,
                                       ActivationType active_gate,
                                       bool old_version = true,
                                       const T *reset_bias = nullptr) {
G
guosheng 已提交
41 42 43 44
  T r_value_update_gate;
  T r_value_reset_gate;
  T r_value_reset_output;
  T r_prev_out = 0;
45 46 47 48 49 50 51 52 53 54
  T r_reset_bias = 0;
  T *update_gate = nullptr;
  T *reset_gate = nullptr;
  if (old_version) {
    update_gate = gate_value;
    reset_gate = gate_value + frame_size;
  } else {
    reset_gate = gate_value;
    update_gate = gate_value + frame_size;
  }
G
guosheng 已提交
55 56 57
  for (int i = 0; i < frame_size; i++) {
    r_value_update_gate = update_gate[i];
    r_value_reset_gate = reset_gate[i];
58 59 60 61
    if (!old_version) {
      r_value_reset_output = reset_output_value[i];
      r_reset_bias = reset_bias[i];
    }
G
guosheng 已提交
62 63
    if (prev_output_value) {
      r_prev_out = prev_output_value[i];
G
guosheng 已提交
64 65
    }

F
Feiyu Chan 已提交
66 67 68 69 70 71
    op_reset_output(&r_value_update_gate,
                    &r_value_reset_gate,
                    &r_prev_out,
                    &r_value_reset_output,
                    active_gate,
                    &r_reset_bias,
72
                    old_version);
G
guosheng 已提交
73

G
guosheng 已提交
74 75 76
    update_gate[i] = r_value_update_gate;
    reset_gate[i] = r_value_reset_gate;
    reset_output_value[i] = r_value_reset_output;
G
guosheng 已提交
77 78 79 80
  }
}

template <class OpFinalOutput, typename T>
F
Feiyu Chan 已提交
81 82 83 84 85 86 87 88
void hl_naive_gru_forward_final_output(OpFinalOutput op_final_output,
                                       T *gate_value,
                                       const T *prev_output_value,
                                       T *output_value,
                                       int frame_size,
                                       ActivationType active_node,
                                       bool origin_mode,
                                       bool old_version = true) {
G
guosheng 已提交
89 90 91 92
  T r_value_update_gate;
  T r_value_frame_state;
  T r_prev_out = 0;
  T r_output;
93 94 95 96 97 98
  T *update_gate;
  if (old_version) {
    update_gate = gate_value;
  } else {
    update_gate = gate_value + frame_size;
  }
G
guosheng 已提交
99 100 101 102 103 104 105
  T *frame_state = gate_value + frame_size * 2;

  for (int i = 0; i < frame_size; i++) {
    r_value_update_gate = update_gate[i];
    r_value_frame_state = frame_state[i];
    if (prev_output_value) {
      r_prev_out = prev_output_value[i];
G
guosheng 已提交
106 107
    }

F
Feiyu Chan 已提交
108 109 110 111 112 113
    op_final_output(&r_value_update_gate,
                    &r_value_frame_state,
                    &r_prev_out,
                    &r_output,
                    active_node,
                    origin_mode);
G
guosheng 已提交
114

G
guosheng 已提交
115 116
    frame_state[i] = r_value_frame_state;
    output_value[i] = r_output;
G
guosheng 已提交
117 118 119 120
  }
}

template <class OpResetOutput, typename T>
G
guosheng 已提交
121
void hl_avx_gru_forward_reset_output(OpResetOutput op_reset_output,
F
Feiyu Chan 已提交
122 123 124 125
                                     T *gate_value,
                                     T *reset_output_value,
                                     const T *prev_output_value,
                                     int frame_size,
126 127 128
                                     ActivationType active_gate,
                                     bool old_version = true,
                                     const T *reset_bias = nullptr) {
G
guosheng 已提交
129
#ifdef __AVX__
130 131
  __m256 r_value_update_gate, r_value_update_gate_last = _mm256_set1_ps(0.0f);
  __m256 r_value_reset_gate, r_value_reset_gate_last = _mm256_set1_ps(0.0f);
G
guosheng 已提交
132
  __m256 r_value_reset_output;
133 134
  __m256 r_prev_out = _mm256_set1_ps(0.0f),
         r_prev_out_last = _mm256_set1_ps(0.0f);
135 136 137 138 139 140 141 142 143 144
  __m256 r_reset_bias = _mm256_set1_ps(0.0f);
  T *update_gate;
  T *reset_gate;
  if (old_version) {
    update_gate = gate_value;
    reset_gate = gate_value + frame_size;
  } else {
    reset_gate = gate_value;
    update_gate = gate_value + frame_size;
  }
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  int block = 8;
  const int n = frame_size;
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;

  if (rest > 0) {
    i = n - block;
    r_value_update_gate_last =
        _mm256_loadu_ps((const float *)(update_gate + i));
    r_value_reset_gate_last = _mm256_loadu_ps((const float *)(reset_gate + i));
    if (prev_output_value) {
      r_prev_out_last = _mm256_loadu_ps((const float *)(prev_output_value + i));
    }
  }
G
guosheng 已提交
160

161 162 163
  for (i = 0; i < end; i += block) {
    r_value_update_gate = _mm256_loadu_ps((const float *)(update_gate + i));
    r_value_reset_gate = _mm256_loadu_ps((const float *)(reset_gate + i));
G
guosheng 已提交
164
    if (prev_output_value) {
165
      r_prev_out = _mm256_loadu_ps((const float *)(prev_output_value + i));
G
guosheng 已提交
166
    }
167 168 169 170 171
    if (!old_version) {
      r_reset_bias = _mm256_loadu_ps((const float *)(reset_bias + i));
      r_value_reset_output =
          _mm256_loadu_ps((const float *)(reset_output_value + i));
    }
G
guosheng 已提交
172

F
Feiyu Chan 已提交
173 174 175 176 177 178
    op_reset_output(&r_value_update_gate,
                    &r_value_reset_gate,
                    &r_prev_out,
                    &r_value_reset_output,
                    active_gate,
                    &r_reset_bias,
179
                    old_version);
G
guosheng 已提交
180

181 182 183 184 185 186 187 188 189 190 191
    _mm256_storeu_ps(reinterpret_cast<float *>(update_gate + i),
                     r_value_update_gate);
    _mm256_storeu_ps(reinterpret_cast<float *>(reset_gate + i),
                     r_value_reset_gate);
    _mm256_storeu_ps(reinterpret_cast<float *>(reset_output_value + i),
                     r_value_reset_output);
  }

  if (rest > 0) {
    i = n - block;

F
Feiyu Chan 已提交
192 193 194 195 196 197 198
    op_reset_output(&r_value_update_gate_last,
                    &r_value_reset_gate_last,
                    &r_prev_out_last,
                    &r_value_reset_output,
                    active_gate,
                    &r_reset_bias,
                    old_version);
199 200 201 202 203 204 205

    _mm256_storeu_ps(reinterpret_cast<float *>(update_gate + i),
                     r_value_update_gate_last);
    _mm256_storeu_ps(reinterpret_cast<float *>(reset_gate + i),
                     r_value_reset_gate_last);
    _mm256_storeu_ps(reinterpret_cast<float *>(reset_output_value + i),
                     r_value_reset_output);
G
guosheng 已提交
206 207 208 209 210
  }
#endif
}

template <class OpFinalOutput, typename T>
G
guosheng 已提交
211
void hl_avx_gru_forward_final_output(OpFinalOutput op_final_output,
F
Feiyu Chan 已提交
212 213 214 215
                                     T *gate_value,
                                     const T *prev_output_value,
                                     T *output_value,
                                     int frame_size,
Q
Qiao Longfei 已提交
216
                                     ActivationType active_node,
217 218
                                     bool origin_mode,
                                     bool old_version = true) {
G
guosheng 已提交
219
#ifdef __AVX__
220 221 222 223
  __m256 r_value_update_gate, r_value_update_gate_last = _mm256_set1_ps(0.0f);
  __m256 r_value_frame_state, r_value_frame_state_last = _mm256_set1_ps(0.0f);
  __m256 r_prev_out = _mm256_set1_ps(0.0f),
         r_prev_out_last = _mm256_set1_ps(0.0f);
G
guosheng 已提交
224
  __m256 r_output;
225 226 227 228 229 230 231
  T *update_gate;
  if (old_version) {
    update_gate = gate_value;
  } else {
    update_gate = gate_value + frame_size;
  }

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
  T *frame_state = gate_value + frame_size * 2;
  int block = 8;
  const int n = frame_size;
  const int rest = n % block;
  const int end = n - rest;
  int i = 0;

  if (rest > 0) {
    i = n - block;
    r_value_update_gate_last =
        _mm256_loadu_ps((const float *)(update_gate + i));
    r_value_frame_state_last =
        _mm256_loadu_ps((const float *)(frame_state + i));
    if (prev_output_value) {
      r_prev_out_last = _mm256_loadu_ps((const float *)(prev_output_value + i));
    }
  }
G
guosheng 已提交
249

250 251 252
  for (i = 0; i < end; i += block) {
    r_value_update_gate = _mm256_loadu_ps((const float *)(update_gate + i));
    r_value_frame_state = _mm256_loadu_ps((const float *)(frame_state + i));
G
guosheng 已提交
253
    if (prev_output_value) {
254
      r_prev_out = _mm256_loadu_ps((const float *)(prev_output_value + i));
G
guosheng 已提交
255 256
    }

F
Feiyu Chan 已提交
257 258 259 260 261 262
    op_final_output(&r_value_update_gate,
                    &r_value_frame_state,
                    &r_prev_out,
                    &r_output,
                    active_node,
                    origin_mode);
G
guosheng 已提交
263

264 265 266 267 268 269 270
    _mm256_storeu_ps(reinterpret_cast<float *>(frame_state + i),
                     r_value_frame_state);
    _mm256_storeu_ps(reinterpret_cast<float *>(output_value + i), r_output);
  }

  if (rest > 0) {
    i = n - block;
F
Feiyu Chan 已提交
271 272 273 274 275 276
    op_final_output(&r_value_update_gate_last,
                    &r_value_frame_state_last,
                    &r_prev_out_last,
                    &r_output,
                    active_node,
                    origin_mode);
277 278 279 280

    _mm256_storeu_ps(reinterpret_cast<float *>(frame_state + i),
                     r_value_frame_state_last);
    _mm256_storeu_ps(reinterpret_cast<float *>(output_value + i), r_output);
G
guosheng 已提交
281
  }
282

G
guosheng 已提交
283 284 285
#endif
}

286 287 288 289
template <typename T, typename Context>
inline void forward_reset_outputV2(const Context &context,
                                   phi::funcs::GRUMetaValue<T> value,
                                   int frame_size) {
290 291 292 293 294 295 296 297 298
  auto &place = *context.eigen_device();
  auto value_reset_gate =
      typename EigenVector<T>::Type(value.gate_value, Array1(frame_size));
  auto value_update_gate = typename EigenVector<T>::Type(
      value.gate_value + frame_size, Array1(frame_size));
  auto value_reset_output = typename EigenVector<T>::Type(
      value.reset_output_value, Array1(frame_size));
  auto value_reset_bias =
      typename EigenVector<T>::ConstType(value.reset_bias, Array1(frame_size));
299 300
  SigmoidFunctor<T>()(place, value_reset_gate, value_reset_gate);
  SigmoidFunctor<T>()(place, value_update_gate, value_update_gate);
301 302 303 304
  value_reset_output.device(place) =
      (value_reset_output + value_reset_bias) * value_reset_gate;
}

305 306 307 308 309 310 311 312
template <typename Context, class OpResetOutput, typename T>
inline void forward_reset_output(OpResetOutput op_reset_output,
                                 phi::funcs::GRUMetaValue<T> value,
                                 int frame_size,
                                 int batch_size,
                                 ActivationType active_gate,
                                 bool old_version = true,
                                 const Context *context = nullptr) {
G
guosheng 已提交
313
  for (int b = 0; b < batch_size; b++) {
314 315 316
    if (!old_version) {
      // use eigen
      forward_reset_outputV2(*context, value, frame_size);
G
guosheng 已提交
317
    } else {
318
      if (OpResetOutput::avx && (frame_size > static_cast<int>(8 - 1)) &&
319
          (sizeof(T) == 4)) {
F
Feiyu Chan 已提交
320 321 322 323 324 325 326 327
        hl_avx_gru_forward_reset_output(op_reset_output,
                                        value.gate_value,
                                        value.reset_output_value,
                                        value.prev_out_value,
                                        frame_size,
                                        active_gate,
                                        old_version,
                                        value.reset_bias);
328
      } else {
F
Feiyu Chan 已提交
329 330 331 332 333 334 335 336
        hl_naive_gru_forward_reset_output(op_reset_output,
                                          value.gate_value,
                                          value.reset_output_value,
                                          value.prev_out_value,
                                          frame_size,
                                          active_gate,
                                          old_version,
                                          value.reset_bias);
337
      }
G
guosheng 已提交
338
    }
G
guosheng 已提交
339 340 341 342
    value.gate_value += frame_size * 3;
    value.reset_output_value += frame_size;
    if (value.prev_out_value) {
      value.prev_out_value += frame_size;
G
guosheng 已提交
343 344 345 346
    }
  }
}

347 348 349 350
template <typename T, typename Context>
inline void forward_final_outputV2(const Context &context,
                                   phi::funcs::GRUMetaValue<T> value,
                                   int frame_size) {
351 352 353 354 355 356 357
  auto &place = *context.eigen_device();
  auto value_update_gate = typename EigenVector<T>::Type(
      value.gate_value + frame_size, Array1(frame_size));
  auto value_frame_state = typename EigenVector<T>::Type(
      value.gate_value + 2 * frame_size, Array1(frame_size));
  auto value_output =
      typename EigenVector<T>::Type(value.output_value, Array1(frame_size));
358
  TanhFunctor<T>()(place, value_frame_state, value_frame_state);
359 360 361 362 363 364 365 366 367 368
  value_output.device(place) =
      (static_cast<T>(1.0) - value_update_gate) * value_frame_state;
  if (value.prev_out_value) {
    auto value_prev_out = typename EigenVector<T>::ConstType(
        value.prev_out_value, Array1(frame_size));
    value_output.device(place) =
        value_output + value_update_gate * value_prev_out;
  }
}

369 370 371 372 373 374 375 376 377
template <typename Context, class OpFinalOutput, typename T>
inline void forward_final_output(OpFinalOutput op_final_output,
                                 phi::funcs::GRUMetaValue<T> value,
                                 int frame_size,
                                 int batch_size,
                                 ActivationType active_node,
                                 bool origin_mode,
                                 bool old_version = true,
                                 const Context *context = nullptr) {
G
guosheng 已提交
378
  for (int b = 0; b < batch_size; b++) {
379 380 381
    if (!old_version) {
      // eigen
      forward_final_outputV2(*context, value, frame_size);
G
guosheng 已提交
382
    } else {
383
      if (OpFinalOutput::avx && (frame_size > static_cast<int>(8 - 1)) &&
384
          (sizeof(T) == 4)) {
F
Feiyu Chan 已提交
385 386
        hl_avx_gru_forward_final_output(op_final_output,
                                        value.gate_value,
387
                                        value.prev_out_value,
F
Feiyu Chan 已提交
388 389 390 391 392
                                        value.output_value,
                                        frame_size,
                                        active_node,
                                        origin_mode,
                                        old_version);
393
      } else {
F
Feiyu Chan 已提交
394 395 396 397 398 399 400 401
        hl_naive_gru_forward_final_output(op_final_output,
                                          value.gate_value,
                                          value.prev_out_value,
                                          value.output_value,
                                          frame_size,
                                          active_node,
                                          origin_mode,
                                          old_version);
402
      }
G
guosheng 已提交
403
    }
G
guosheng 已提交
404 405 406 407
    value.gate_value += frame_size * 3;
    value.output_value += frame_size;
    if (value.prev_out_value) {
      value.prev_out_value += frame_size;
G
guosheng 已提交
408 409 410 411 412
    }
  }
}

template <class OpStateGrad, typename T>
F
Feiyu Chan 已提交
413 414 415 416 417 418
void hl_naive_gru_backward_state_grad(OpStateGrad op_state_grad,
                                      T *gate_value,
                                      T *gate_grad,
                                      const T *prev_out_value,
                                      T *prev_out_grad,
                                      T *output_grad,
G
guosheng 已提交
419
                                      int frame_size,
Q
Qiao Longfei 已提交
420 421
                                      ActivationType active_node,
                                      bool origin_mode) {
G
guosheng 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
  T r_update_gate_value;
  T r_update_gate_grad;
  T r_frame_state_value;
  T r_frame_state_grad;
  T r_out_grad;
  T r_prev_out_value = 0;
  T r_prev_out_grad = 0;
  T *update_gate_value = gate_value;
  T *update_gate_grad = gate_grad;
  T *frame_state_value = gate_value + frame_size * 2;
  T *frame_state_grad = gate_grad + frame_size * 2;

  for (int i = 0; i < frame_size; i++) {
    r_update_gate_value = update_gate_value[i];
    r_frame_state_value = frame_state_value[i];
    r_out_grad = output_grad[i];
    if (prev_out_value) {
      r_prev_out_value = prev_out_value[i];
G
guosheng 已提交
440
    }
G
guosheng 已提交
441 442
    if (prev_out_grad) {
      r_prev_out_grad = prev_out_grad[i];
G
guosheng 已提交
443 444
    }

F
Feiyu Chan 已提交
445 446 447 448 449 450 451 452 453
    op_state_grad(&r_update_gate_value,
                  &r_update_gate_grad,
                  &r_frame_state_value,
                  &r_frame_state_grad,
                  &r_prev_out_value,
                  &r_prev_out_grad,
                  &r_out_grad,
                  active_node,
                  origin_mode);
G
guosheng 已提交
454

G
guosheng 已提交
455 456 457 458
    update_gate_grad[i] = r_update_gate_grad;
    frame_state_grad[i] = r_frame_state_grad;
    if (prev_out_grad) {
      prev_out_grad[i] = r_prev_out_grad;
G
guosheng 已提交
459 460 461 462 463
    }
  }
}

template <class OpResetGrad, typename T>
F
Feiyu Chan 已提交
464 465 466 467 468 469
void hl_naive_gru_backward_reset_grad(OpResetGrad op_reset_grad,
                                      T *gate_value,
                                      T *gate_grad,
                                      const T *prev_out_value,
                                      T *prev_out_grad,
                                      T *reset_output_grad,
G
guosheng 已提交
470
                                      int frame_size,
Q
Qiao Longfei 已提交
471
                                      ActivationType active_gate) {
G
guosheng 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
  T r_update_gate_value;
  T r_update_gate_grad;
  T r_reset_gate_value;
  T r_reset_gate_grad;
  T r_reset_output_grad = 0;
  T r_prev_out_value = 0;
  T r_prev_out_grad = 0;
  T *update_gate_value = gate_value;
  T *update_gate_grad = gate_grad;
  T *reset_gate_value = gate_value + frame_size;
  T *reset_gate_grad = gate_grad + frame_size;

  for (int i = 0; i < frame_size; i++) {
    r_update_gate_value = update_gate_value[i];
    r_update_gate_grad = update_gate_grad[i];
    r_reset_gate_value = reset_gate_value[i];

    if (prev_out_value && prev_out_grad) {
      r_reset_output_grad = reset_output_grad[i];
G
guosheng 已提交
491
    }
G
guosheng 已提交
492 493
    if (prev_out_value) {
      r_prev_out_value = prev_out_value[i];
G
guosheng 已提交
494
    }
G
guosheng 已提交
495 496
    if (prev_out_grad) {
      r_prev_out_grad = prev_out_grad[i];
G
guosheng 已提交
497 498
    }

F
Feiyu Chan 已提交
499 500 501 502 503 504 505 506
    op_reset_grad(&r_update_gate_value,
                  &r_update_gate_grad,
                  &r_reset_gate_value,
                  &r_reset_gate_grad,
                  &r_prev_out_value,
                  &r_prev_out_grad,
                  &r_reset_output_grad,
                  active_gate);
G
guosheng 已提交
507

G
guosheng 已提交
508 509 510 511
    update_gate_grad[i] = r_update_gate_grad;
    reset_gate_grad[i] = r_reset_gate_grad;
    if (prev_out_grad) {
      prev_out_grad[i] = r_prev_out_grad;
G
guosheng 已提交
512 513 514 515 516
    }
  }
}

template <class OpStateGrad, typename T>
F
Feiyu Chan 已提交
517 518 519 520 521 522 523 524
void hl_avx_gru_backward_state_grad(OpStateGrad op_state_grad,
                                    T *gate_value,
                                    T *gate_grad,
                                    const T *prev_out_value,
                                    T *prev_out_grad,
                                    T *output_grad,
                                    int frame_size,
                                    ActivationType active_node,
Q
Qiao Longfei 已提交
525
                                    bool origin_mode) {
G
guosheng 已提交
526
#ifdef __AVX__
G
guosheng 已提交
527 528 529 530 531 532 533
  __m256 r_update_gate_value;
  __m256 r_update_gate_grad;
  __m256 r_frame_state_value;
  __m256 r_frame_state_grad;
  __m256 r_out_grad;
  __m256 r_prev_out_value = _mm256_set1_ps(0.0f);
  __m256 r_prev_out_grad = _mm256_set1_ps(0.0f);
534 535 536 537 538 539
  __m256 *update_gate_value = reinterpret_cast<__m256 *>(gate_value);
  __m256 *update_gate_grad = reinterpret_cast<__m256 *>(gate_grad);
  __m256 *frame_state_value =
      reinterpret_cast<__m256 *>(gate_value + frame_size * 2);
  __m256 *frame_state_grad =
      reinterpret_cast<__m256 *>(gate_grad + frame_size * 2);
G
guosheng 已提交
540 541 542 543

  for (int i = 0; i < frame_size / 8; i++) {
    r_update_gate_value = update_gate_value[i];
    r_frame_state_value = frame_state_value[i];
544
    r_out_grad = (reinterpret_cast<__m256 *>(output_grad))[i];
G
guosheng 已提交
545
    if (prev_out_value) {
546
      r_prev_out_value = (reinterpret_cast<const __m256 *>(prev_out_value))[i];
G
guosheng 已提交
547
    }
G
guosheng 已提交
548
    if (prev_out_grad) {
549
      r_prev_out_grad = (reinterpret_cast<__m256 *>(prev_out_grad))[i];
G
guosheng 已提交
550 551
    }

F
Feiyu Chan 已提交
552 553 554 555 556 557 558 559 560
    op_state_grad(&r_update_gate_value,
                  &r_update_gate_grad,
                  &r_frame_state_value,
                  &r_frame_state_grad,
                  &r_prev_out_value,
                  &r_prev_out_grad,
                  &r_out_grad,
                  active_node,
                  origin_mode);
G
guosheng 已提交
561

G
guosheng 已提交
562 563 564
    update_gate_grad[i] = r_update_gate_grad;
    frame_state_grad[i] = r_frame_state_grad;
    if (prev_out_grad) {
565
      (reinterpret_cast<__m256 *>(prev_out_grad))[i] = r_prev_out_grad;
G
guosheng 已提交
566 567 568 569 570 571
    }
  }
#endif
}

template <class OpResetGrad, typename T>
F
Feiyu Chan 已提交
572 573 574 575 576 577
void hl_avx_gru_backward_reset_grad(OpResetGrad op_reset_grad,
                                    T *gate_value,
                                    T *gate_grad,
                                    const T *prev_out_value,
                                    T *prev_out_grad,
                                    T *reset_output_grad,
Q
Qiao Longfei 已提交
578 579
                                    int frame_size,
                                    ActivationType active_gate) {
G
guosheng 已提交
580
#ifdef __AVX__
G
guosheng 已提交
581 582 583 584 585 586 587
  __m256 r_update_gate_value;
  __m256 r_update_gate_grad;
  __m256 r_reset_gate_value;
  __m256 r_reset_gate_grad;
  __m256 r_reset_output_grad = _mm256_set1_ps(0.0f);
  __m256 r_prev_out_value = _mm256_set1_ps(0.0f);
  __m256 r_prev_out_grad = _mm256_set1_ps(0.0f);
588 589 590 591 592
  __m256 *update_gate_value = reinterpret_cast<__m256 *>(gate_value);
  __m256 *update_gate_grad = reinterpret_cast<__m256 *>(gate_grad);
  __m256 *reset_gate_value =
      reinterpret_cast<__m256 *>(gate_value + frame_size);
  __m256 *reset_gate_grad = reinterpret_cast<__m256 *>(gate_grad + frame_size);
G
guosheng 已提交
593 594 595 596 597 598 599

  for (int i = 0; i < frame_size / 8; i++) {
    r_update_gate_value = update_gate_value[i];
    r_update_gate_grad = update_gate_grad[i];
    r_reset_gate_value = reset_gate_value[i];

    if (prev_out_value && prev_out_grad) {
600
      r_reset_output_grad = (reinterpret_cast<__m256 *>(reset_output_grad))[i];
G
guosheng 已提交
601
    }
G
guosheng 已提交
602
    if (prev_out_value) {
603
      r_prev_out_value = (reinterpret_cast<const __m256 *>(prev_out_value))[i];
G
guosheng 已提交
604
    }
G
guosheng 已提交
605
    if (prev_out_grad) {
606
      r_prev_out_grad = (reinterpret_cast<__m256 *>(prev_out_grad))[i];
G
guosheng 已提交
607 608
    }

F
Feiyu Chan 已提交
609 610 611 612 613 614 615 616
    op_reset_grad(&r_update_gate_value,
                  &r_update_gate_grad,
                  &r_reset_gate_value,
                  &r_reset_gate_grad,
                  &r_prev_out_value,
                  &r_prev_out_grad,
                  &r_reset_output_grad,
                  active_gate);
G
guosheng 已提交
617

G
guosheng 已提交
618 619 620
    update_gate_grad[i] = r_update_gate_grad;
    reset_gate_grad[i] = r_reset_gate_grad;
    if (prev_out_grad) {
621
      (reinterpret_cast<__m256 *>(prev_out_grad))[i] = r_prev_out_grad;
G
guosheng 已提交
622 623 624 625 626
    }
  }
#endif
}

627
template <class OpGruGrad, typename T>
F
Feiyu Chan 已提交
628 629 630 631 632 633 634 635 636 637
inline void hl_naive_gru_backward(OpGruGrad op_gru_grad,
                                  T *gate_value,
                                  T *gate_grad,
                                  const T *prev_out_value,
                                  T *prev_out_grad,
                                  T *reset_output_value,
                                  T *reset_output_grad,
                                  T *output_grad,
                                  int frame_size,
                                  ActivationType active_node,
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
                                  ActivationType active_gate) {
  T r_value_reset_gate;
  T r_grad_reset_gate;
  T r_value_update_gate;
  T r_grad_update_gate;
  T r_value_frame_state;
  T r_grad_frame_state;
  T r_value_prev_out = 0;
  T r_grad_prev_out = 0;
  T r_grad_output;
  T r_value_reset_output;
  T r_grad_reset_output = 0;
  T *reset_gate_value = gate_value;
  T *reset_gate_grad = gate_grad;
  T *update_gate_value = gate_value + frame_size;
  T *update_gate_grad = gate_grad + frame_size;
  T *frame_state_value = gate_value + 2 * frame_size;
  T *frame_state_grad = gate_grad + 2 * frame_size;

  for (int i = 0; i < frame_size; ++i) {
    r_value_reset_gate = reset_gate_value[i];
    r_grad_reset_gate = reset_gate_grad[i];
    r_value_update_gate = update_gate_value[i];
    r_grad_update_gate = update_gate_grad[i];
    r_value_frame_state = frame_state_value[i];
    r_grad_frame_state = frame_state_grad[i];
    if (prev_out_value) {
      r_value_prev_out = prev_out_value[i];
    }
    if (prev_out_grad) {
      r_grad_prev_out = prev_out_grad[i];
    }
    r_grad_output = output_grad[i];
    r_value_reset_output = reset_output_value[i];
    if (prev_out_value && prev_out_grad) {
      r_grad_reset_output = reset_output_grad[i];
    }

F
Feiyu Chan 已提交
676 677 678 679 680 681 682 683 684 685 686 687
    op_gru_grad(&r_value_reset_gate,
                &r_grad_reset_gate,
                &r_value_update_gate,
                &r_grad_update_gate,
                &r_value_frame_state,
                &r_grad_frame_state,
                &r_value_prev_out,
                &r_grad_prev_out,
                &r_grad_output,
                &r_value_reset_output,
                &r_grad_reset_output,
                active_node,
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
                active_gate);

    reset_gate_grad[i] = r_grad_reset_gate;
    update_gate_grad[i] = r_grad_update_gate;
    frame_state_grad[i] = r_grad_frame_state;
    if (prev_out_grad) {
      prev_out_grad[i] = r_grad_prev_out;
    }
    if (prev_out_value && prev_out_grad) {
      reset_output_grad[i] = r_grad_reset_output;
    }
  }
}

template <class OpGruGrad, typename T>
F
Feiyu Chan 已提交
703 704 705 706 707 708 709 710 711 712
inline void hl_avx_gru_backward(OpGruGrad op_gru_grad,
                                T *gate_value,
                                T *gate_grad,
                                const T *prev_out_value,
                                T *prev_out_grad,
                                T *reset_output_value,
                                T *reset_output_grad,
                                T *output_grad,
                                int frame_size,
                                ActivationType active_node,
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
                                ActivationType active_gate) {
#ifdef __AVX__
  __m256 r_value_reset_gate;
  __m256 r_grad_reset_gate;
  __m256 r_value_update_gate;
  __m256 r_grad_update_gate;
  __m256 r_value_frame_state;
  __m256 r_grad_frame_state;
  __m256 r_value_prev_out = _mm256_set1_ps(0.0f);
  __m256 r_grad_prev_out = _mm256_set1_ps(0.0f);
  __m256 r_grad_output;
  __m256 r_value_reset_output;
  __m256 r_grad_reset_output = _mm256_set1_ps(0.0f);
  __m256 *reset_gate_value = reinterpret_cast<__m256 *>(gate_value);
  __m256 *reset_gate_grad = reinterpret_cast<__m256 *>(gate_grad);
  __m256 *update_gate_value =
      reinterpret_cast<__m256 *>(gate_value + frame_size);
  __m256 *update_gate_grad = reinterpret_cast<__m256 *>(gate_grad + frame_size);
  __m256 *frame_state_value =
      reinterpret_cast<__m256 *>(gate_value + 2 * frame_size);
  __m256 *frame_state_grad =
      reinterpret_cast<__m256 *>(gate_grad + 2 * frame_size);

  for (int i = 0; i < frame_size / 8; ++i) {
    r_value_reset_gate = reset_gate_value[i];
    r_grad_reset_gate = reset_gate_grad[i];
    r_value_update_gate = update_gate_value[i];
    r_grad_update_gate = update_gate_grad[i];
    r_value_frame_state = frame_state_value[i];
    r_grad_frame_state = frame_state_grad[i];
    if (prev_out_value) {
      r_value_prev_out = (reinterpret_cast<const __m256 *>(prev_out_value))[i];
    }
    if (prev_out_grad) {
      r_grad_prev_out = (reinterpret_cast<__m256 *>(prev_out_grad))[i];
    }
    r_grad_output = (reinterpret_cast<__m256 *>(output_grad))[i];
    r_value_reset_output = (reinterpret_cast<__m256 *>(reset_output_value))[i];
    if (prev_out_value && prev_out_grad) {
      r_grad_reset_output = (reinterpret_cast<__m256 *>(reset_output_grad))[i];
    }

F
Feiyu Chan 已提交
755 756 757 758 759 760 761 762 763 764 765 766
    op_gru_grad(&r_value_reset_gate,
                &r_grad_reset_gate,
                &r_value_update_gate,
                &r_grad_update_gate,
                &r_value_frame_state,
                &r_grad_frame_state,
                &r_value_prev_out,
                &r_grad_prev_out,
                &r_grad_output,
                &r_value_reset_output,
                &r_grad_reset_output,
                active_node,
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
                active_gate);

    reset_gate_grad[i] = r_grad_reset_gate;
    update_gate_grad[i] = r_grad_update_gate;
    frame_state_grad[i] = r_grad_frame_state;
    if (prev_out_grad) {
      (reinterpret_cast<__m256 *>(prev_out_grad))[i] = r_grad_prev_out;
    }
    if (prev_out_value && prev_out_grad) {
      (reinterpret_cast<__m256 *>(reset_output_grad))[i] = r_grad_reset_output;
    }
  }
#endif
}

G
guosheng 已提交
782
template <class OpStateGrad, typename T>
G
guosheng 已提交
783
inline void backward_state_grad(OpStateGrad op_state_grad,
F
Feiyu Chan 已提交
784 785 786 787 788 789
                                phi::funcs::GRUMetaValue<T> value,
                                phi::funcs::GRUMetaGrad<T> grad,
                                int frame_size,
                                int batch_size,
                                ActivationType active_node,
                                bool origin_mode) {
G
guosheng 已提交
790 791
  for (int b = 0; b < batch_size; b++) {
    if (OpStateGrad::avx && !(frame_size & (8 - 1)) && (sizeof(T) == 4)) {
F
Feiyu Chan 已提交
792 793 794 795 796 797 798 799 800
      hl_avx_gru_backward_state_grad(op_state_grad,
                                     value.gate_value,
                                     grad.gate_grad,
                                     value.prev_out_value,
                                     grad.prev_out_grad,
                                     grad.output_grad,
                                     frame_size,
                                     active_node,
                                     origin_mode);
G
guosheng 已提交
801
    } else {
F
Feiyu Chan 已提交
802 803 804 805 806 807 808 809 810
      hl_naive_gru_backward_state_grad(op_state_grad,
                                       value.gate_value,
                                       grad.gate_grad,
                                       value.prev_out_value,
                                       grad.prev_out_grad,
                                       grad.output_grad,
                                       frame_size,
                                       active_node,
                                       origin_mode);
G
guosheng 已提交
811 812
    }

G
guosheng 已提交
813 814 815
    value.gate_value += frame_size * 3;
    if (value.prev_out_value) {
      value.prev_out_value += frame_size;
G
guosheng 已提交
816 817
    }

G
guosheng 已提交
818 819 820 821
    grad.gate_grad += frame_size * 3;
    grad.output_grad += frame_size;
    if (grad.prev_out_grad) {
      grad.prev_out_grad += frame_size;
G
guosheng 已提交
822 823 824 825 826
    }
  }
}

template <class OpResetGrad, typename T>
G
guosheng 已提交
827
inline void backward_reset_grad(OpResetGrad op_reset_grad,
F
Feiyu Chan 已提交
828 829 830 831
                                phi::funcs::GRUMetaValue<T> value,
                                phi::funcs::GRUMetaGrad<T> grad,
                                int frame_size,
                                int batch_size,
Q
Qiao Longfei 已提交
832
                                ActivationType active_gate) {
G
guosheng 已提交
833 834
  for (int b = 0; b < batch_size; b++) {
    if (OpResetGrad::avx && !(frame_size & (8 - 1)) && (sizeof(T) == 4)) {
F
Feiyu Chan 已提交
835 836 837 838 839 840 841 842
      hl_avx_gru_backward_reset_grad(op_reset_grad,
                                     value.gate_value,
                                     grad.gate_grad,
                                     value.prev_out_value,
                                     grad.prev_out_grad,
                                     grad.reset_output_grad,
                                     frame_size,
                                     active_gate);
G
guosheng 已提交
843
    } else {
F
Feiyu Chan 已提交
844 845 846 847 848 849 850 851
      hl_naive_gru_backward_reset_grad(op_reset_grad,
                                       value.gate_value,
                                       grad.gate_grad,
                                       value.prev_out_value,
                                       grad.prev_out_grad,
                                       grad.reset_output_grad,
                                       frame_size,
                                       active_gate);
G
guosheng 已提交
852 853
    }

G
guosheng 已提交
854 855 856
    value.gate_value += frame_size * 3;
    if (value.prev_out_value) {
      value.prev_out_value += frame_size;
G
guosheng 已提交
857 858
    }

G
guosheng 已提交
859 860 861 862
    grad.gate_grad += frame_size * 3;
    grad.reset_output_grad += frame_size;
    if (grad.prev_out_grad) {
      grad.prev_out_grad += frame_size;
G
guosheng 已提交
863 864 865 866
    }
  }
}

867 868
template <typename T, typename Context>
inline void gru_backward(const Context &context,
F
Feiyu Chan 已提交
869 870
                         phi::funcs::GRUMetaValue<T> value,
                         phi::funcs::GRUMetaGrad<T> grad,
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
                         int frame_size) {
  auto &place = *context.eigen_device();

  auto value_reset_gate =
      typename EigenVector<T>::Type(value.gate_value, Array1(frame_size));
  auto grad_reset_gate =
      typename EigenVector<T>::Type(grad.gate_grad, Array1(frame_size));
  auto value_update_gate = typename EigenVector<T>::Type(
      value.gate_value + frame_size, Array1(frame_size));
  auto grad_update_gate = typename EigenVector<T>::Type(
      grad.gate_grad + frame_size, Array1(frame_size));
  auto value_frame_state = typename EigenVector<T>::Type(
      value.gate_value + frame_size * 2, Array1(frame_size));
  auto grad_frame_state = typename EigenVector<T>::Type(
      grad.gate_grad + frame_size * 2, Array1(frame_size));

  auto grad_output =
      typename EigenVector<T>::Type(grad.output_grad, Array1(frame_size));
  auto value_reset_output = typename EigenVector<T>::Type(
      value.reset_output_value, Array1(frame_size));
  auto grad_reset_output =
      typename EigenVector<T>::Type(grad.reset_output_grad, Array1(frame_size));

  if (value.prev_out_value) {
    auto value_prev_out = typename EigenVector<T>::ConstType(
        value.prev_out_value, Array1(frame_size));
897 898 899 900 901
    SigmoidGradFunctor<T>()(place,
                            1 /*useless*/,
                            value_update_gate,
                            (value_prev_out - value_frame_state) * grad_output,
                            grad_update_gate);
902
  } else {
903
    SigmoidGradFunctor<T>()(
F
Feiyu Chan 已提交
904 905 906 907 908
        place,
        1 /*useless*/,
        value_update_gate,
        static_cast<T>(-1) * value_frame_state * grad_output,
        grad_update_gate);
909 910 911 912 913 914 915
  }
  if (grad.prev_out_grad) {
    auto grad_prev_out =
        typename EigenVector<T>::Type(grad.prev_out_grad, Array1(frame_size));
    grad_prev_out.device(place) =
        grad_prev_out + grad_output * value_update_gate;
  }
916 917 918 919 920 921
  TanhGradFunctor<T>()(place,
                       1 /*useless*/,
                       value_frame_state,
                       grad_output * (static_cast<T>(1.0) - value_update_gate),
                       grad_frame_state);
  SigmoidGradFunctor<T>()(
F
Feiyu Chan 已提交
922 923 924
      place,
      1 /*useless*/,
      value_reset_gate,
925 926 927 928 929 930 931
      value_reset_output / value_reset_gate * grad_frame_state,
      grad_reset_gate);
  if (value.prev_out_value && grad.prev_out_grad) {
    grad_reset_output.device(place) = value_reset_gate * grad_frame_state;
  }
}

932 933
template <class OpGruGrad, typename T, typename Context>
inline void cpu_gru_backward(const Context &context,
F
Feiyu Chan 已提交
934 935 936 937 938 939
                             OpGruGrad op_gru_grad,
                             phi::funcs::GRUMetaValue<T> value,
                             phi::funcs::GRUMetaGrad<T> grad,
                             int frame_size,
                             int batch_size,
                             ActivationType active_node,
940 941
                             ActivationType active_gate) {
  for (int b = 0; b < batch_size; ++b) {
942 943
    // eigen
    gru_backward(context, value, grad, frame_size);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

    value.gate_value += frame_size * 3;
    value.reset_output_value += frame_size;
    if (value.prev_out_value) {
      value.prev_out_value += frame_size;
    }

    grad.gate_grad += frame_size * 3;
    grad.output_grad += frame_size;
    grad.reset_output_grad += frame_size;
    if (grad.prev_out_grad) {
      grad.prev_out_grad += frame_size;
    }
  }
}

960
#endif  // @} End Group for GRU CPU
G
guosheng 已提交
961 962

}  // namespace detail
F
Feiyu Chan 已提交
963 964
}  // namespace funcs
}  // namespace phi