expand_v2_mkldnn_op.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/convert_utils.h"
J
jakpiase 已提交
16
#include "paddle/fluid/operators/expand_v2_op.h"
17 18 19 20 21
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace {

using paddle::framework::Tensor;
22
using phi::vectorize;
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
using paddle::framework::GradVarName;
using paddle::framework::ExecutionContext;
using paddle::platform::MKLDNNDeviceContext;

template <typename T>
class ExpandMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    auto x_vec_dims = vectorize(x->dims());
J
jakpiase 已提交
42 43 44 45 46

    auto out_new_dims = paddle::operators::get_expand_shape(ctx);
    for (size_t i = 0; i < out_new_dims.size(); ++i) {
      out_new_dims[i] = out_new_dims[i] > 0 ? out_new_dims[i] : x_vec_dims[i];
    }
47

J
jakpiase 已提交
48
    if (x_vec_dims.size() != out_new_dims.size()) {
49
      x_vec_dims = GetExtendedXDims(x_vec_dims, out_new_dims.size());
50 51
    }

52
    out->Resize(phi::make_ddim(out_new_dims));
53
    paddle::platform::BroadcastDataMKLDNNHandler<T> handler(
54 55
        dnnl::algorithm::binary_add, onednn_engine, ctx.GetPlace(), x, out,
        0.0f, 1.0f, x_vec_dims);
56 57

    auto src_memory_p = handler.AcquireSrcMemory(x);
58
    auto dst_memory_p = handler.AcquireZeroedDstMemory(out);
59 60 61 62 63 64 65 66 67 68 69
    auto binary_p = handler.AcquireForwardPrimitive();

    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC_0, *dst_memory_p},
        {DNNL_ARG_SRC_1, *src_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
    binary_p->execute(astream, args);
    astream.wait();

70
    out->set_mem_desc(dst_memory_p->get_desc());
71 72 73
  }

 private:
74 75 76
  std::vector<int64_t> GetExtendedXDims(const std::vector<int64_t>& x_vec_dims,
                                        int new_size) const {
    std::vector<int64_t> extended_x_dims(new_size, 1);
77
    std::copy(x_vec_dims.begin(), x_vec_dims.end(),
78
              extended_x_dims.begin() + new_size - x_vec_dims.size());
79

80
    return extended_x_dims;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  }
};

template <typename T>
class ExpandGradMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<Tensor>(GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(GradVarName("X"));

    auto dx_vec_dims = vectorize(dx->dims());
    auto dout_vec_dims = vectorize(dout->dims());

    if (dx_vec_dims.size() != dout_vec_dims.size()) {
      dx_vec_dims.insert(dx_vec_dims.begin(),
                         dout_vec_dims.size() - dx_vec_dims.size(), 1);
    }

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
    if (dout_vec_dims == dx_vec_dims) {
108 109
      dnnl::memory::data_type dout_type = paddle::framework::ToMKLDNNDataType(
          paddle::framework::TransToProtoVarType(dout->dtype()));
110
      paddle::platform::ReorderMKLDNNHandler reorder_handler(
111 112
          dout_vec_dims, paddle::framework::TransToProtoVarType(dout->dtype()),
          dout_type, onednn_engine);
113 114

      auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
115
          dout->mem_desc(), paddle::platform::to_void_cast(dout->data<T>()));
116

117 118 119
      auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
          dx, paddle::platform::GetPlainMKLDNNFormat(dx_vec_dims.size()),
          ctx.GetPlace());
120 121 122 123 124 125 126

      auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                      reorder_dst_memory_p);

      reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
      astream.wait();

127
      dx->set_mem_desc(reorder_dst_memory_p->get_desc());
128 129
    } else {
      paddle::platform::ReductionMKLDNNHandler<T> handler(
130 131
          dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine,
          ctx.GetPlace(), dout, dx, dx_vec_dims);
132 133 134 135 136 137 138 139 140 141 142 143

      auto src_memory_p = handler.AcquireSrcMemory(dout);
      auto dst_memory_p = handler.AcquireDstMemory(dx);

      std::unordered_map<int, dnnl::memory> reduction_args = {
          {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};

      auto reduction_p = handler.AcquireForwardPrimitive();

      reduction_p->execute(astream, reduction_args);
      astream.wait();
      dx->set_layout(paddle::framework::DataLayout::kMKLDNN);
144 145
      dx->set_mem_desc(
          dst_memory_p->get_desc().reshape(vectorize<int64_t>(dx->dims())));
146 147 148 149 150 151 152 153 154 155 156 157
    }
  }
};
}  // anonymous namespace

REGISTER_OP_KERNEL(expand_v2, MKLDNN, paddle::platform::CPUPlace,
                   ExpandMKLDNNKernel<float>,
                   ExpandMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(expand_v2_grad, MKLDNN, paddle::platform::CPUPlace,
                   ExpandGradMKLDNNKernel<float>,
                   ExpandGradMKLDNNKernel<paddle::platform::bfloat16>);