test_imperative_transformer.py 23.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
L
lujun 已提交
19
from paddle.fluid.dygraph import Embedding, LayerNorm, FC, to_variable, Layer, guard
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
from test_imperative_base import new_program_scope
from paddle.fluid import core
import numpy as np
import six
np.set_printoptions(suppress=True)


# Copy from models
class TrainTaskConfig(object):
    # support both CPU and GPU now.
    use_gpu = True
    # the epoch number to train.
    pass_num = 30
    # the number of sequences contained in a mini-batch.
    # deprecated, set batch_size in args.
    batch_size = 32
    # the hyper parameters for Adam optimizer.
    # This static learning_rate will be multiplied to the LearningRateScheduler
    # derived learning rate the to get the final learning rate.
    learning_rate = 2.0
    beta1 = 0.9
    beta2 = 0.997
    eps = 1e-9
    # the parameters for learning rate scheduling.
    warmup_steps = 8000
    # the weight used to mix up the ground-truth distribution and the fixed
    # uniform distribution in label smoothing when training.
    # Set this as zero if label smoothing is not wanted.
    label_smooth_eps = 0.1
    # the directory for saving trained models.
    model_dir = "trained_models"
    # the directory for saving checkpoints.
    ckpt_dir = "trained_ckpts"
    # the directory for loading checkpoint.
    # If provided, continue training from the checkpoint.
    ckpt_path = None
    # the parameter to initialize the learning rate scheduler.
    # It should be provided if use checkpoints, since the checkpoint doesn't
    # include the training step counter currently.
    start_step = 0
    # the frequency to save trained models.
    save_freq = 10000


class InferTaskConfig(object):
    use_gpu = True
    # the number of examples in one run for sequence generation.
    batch_size = 10
    # the parameters for beam search.
    beam_size = 5
    max_out_len = 256
    # the number of decoded sentences to output.
    n_best = 1
    # the flags indicating whether to output the special tokens.
    output_bos = False
    output_eos = False
    output_unk = True
    # the directory for loading the trained model.
    model_path = "trained_models/pass_1.infer.model"


class ModelHyperParams(object):
    # These following five vocabularies related configurations will be set
    # automatically according to the passed vocabulary path and special tokens.
    # size of source word dictionary.
    src_vocab_size = 10000
    # size of target word dictionay
    trg_vocab_size = 10000
    # index for <bos> token
    bos_idx = 0
    # index for <eos> token
    eos_idx = 1
    # index for <unk> token
    unk_idx = 2
    # max length of sequences deciding the size of position encoding table.
    max_length = 4
    # the dimension for word embeddings, which is also the last dimension of
    # the input and output of multi-head attention, position-wise feed-forward
    # networks, encoder and decoder.
    d_model = 512
    # size of the hidden layer in position-wise feed-forward networks.
    d_inner_hid = 2048
    # the dimension that keys are projected to for dot-product attention.
    d_key = 64
    # the dimension that values are projected to for dot-product attention.
    d_value = 64
    # number of head used in multi-head attention.
    n_head = 8
    # number of sub-layers to be stacked in the encoder and decoder.
M
minqiyang 已提交
109
    n_layer = 1
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    # dropout rates of different modules.
    prepostprocess_dropout = 0.1
    attention_dropout = 0.1
    relu_dropout = 0.1
    # to process before each sub-layer
    preprocess_cmd = "n"  # layer normalization
    # to process after each sub-layer
    postprocess_cmd = "da"  # dropout + residual connection
    # random seed used in dropout for CE.
    dropout_seed = 1
    # the flag indicating whether to share embedding and softmax weights.
    # vocabularies in source and target should be same for weight sharing.
    weight_sharing = True


def merge_cfg_from_list(cfg_list, g_cfgs):
    """
    Set the above global configurations using the cfg_list.
    """
    assert len(cfg_list) % 2 == 0
    for key, value in zip(cfg_list[0::2], cfg_list[1::2]):
        for g_cfg in g_cfgs:
            if hasattr(g_cfg, key):
                try:
                    value = eval(value)
                except Exception:  # for file path
                    pass
                setattr(g_cfg, key, value)
                break


def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
    channels = d_pos_vec
    position = np.arange(n_position)
    num_timescales = channels // 2
    log_timescale_increment = (np.log(float(1e4) / float(1)) /
                               (num_timescales - 1))
    inv_timescales = np.exp(np.arange(
        num_timescales)) * -log_timescale_increment
    scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales,
                                                               0)
    signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1)
    signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant')
    position_enc = signal
    return position_enc.astype("float32")


def create_data(is_static=False):
    if is_static:
        return [
            src_word_np, src_pos_np, src_slf_attn_bias_np, trg_word_np,
            trg_pos_np, trg_slf_attn_bias_np, trg_src_attn_bias_np, lbl_word_np,
            lbl_weight_np
        ]
    else:
        enc_inputs = [
            to_variable(src_word_np), to_variable(src_pos_np),
            to_variable(src_slf_attn_bias_np)
        ]
        dec_inputs = [
            to_variable(trg_word_np), to_variable(trg_pos_np),
            to_variable(trg_slf_attn_bias_np), to_variable(trg_src_attn_bias_np)
        ]
        label = to_variable(lbl_word_np)
        weight = to_variable(lbl_weight_np)
        return enc_inputs, dec_inputs, label, weight


def create_feed_dict_list(data, init=False):
    if init:
        data_input_names = encoder_data_input_fields + \
                           decoder_data_input_fields[:-1] + label_data_input_fields + pos_enc_param_names
    else:
        data_input_names = encoder_data_input_fields + \
                           decoder_data_input_fields[:-1] + label_data_input_fields
    feed_dict_list = dict()
    for i in range(len(data_input_names)):
        feed_dict_list[data_input_names[i]] = data[i]
    return feed_dict_list


def make_all_inputs(input_fields):
    """
    Define the input data layers for the transformer model.
    """
    inputs = []
    for input_field in input_fields:
        input_var = fluid.layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
            lod_level=input_descs[input_field][2]
            if len(input_descs[input_field]) == 3 else 0,
            append_batch_size=False)
        inputs.append(input_var)
    return inputs


# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size = 32
# The placeholder for squence length in compile time.
seq_len = ModelHyperParams.max_length
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs = {
    # The actual data shape of src_word is:
    # [batch_size, max_src_len_in_batch, 1]
    "src_word": [(batch_size, seq_len, 1), "int64", 2],
    # The actual data shape of src_pos is:
    # [batch_size, max_src_len_in_batch, 1]
    "src_pos": [(batch_size, seq_len, 1), "int64"],
    # This input is used to remove attention weights on paddings in the
    # encoder.
    # The actual data shape of src_slf_attn_bias is:
    # [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
    "src_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
                           seq_len), "float32"],
    # The actual data shape of trg_word is:
    # [batch_size, max_trg_len_in_batch, 1]
    "trg_word": [(batch_size, seq_len, 1), "int64",
                 2],  # lod_level is only used in fast decoder.
    # The actual data shape of trg_pos is:
    # [batch_size, max_trg_len_in_batch, 1]
    "trg_pos": [(batch_size, seq_len, 1), "int64"],
    # This input is used to remove attention weights on paddings and
    # subsequent words in the decoder.
    # The actual data shape of trg_slf_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
    "trg_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
                           seq_len), "float32"],
    # This input is used to remove attention weights on paddings of the source
    # input in the encoder-decoder attention.
    # The actual data shape of trg_src_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
    "trg_src_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
                           seq_len), "float32"],
    # This input is used in independent decoder program for inference.
    # The actual data shape of enc_output is:
    # [batch_size, max_src_len_in_batch, d_model]
    "enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"],
    # The actual data shape of label_word is:
    # [batch_size * max_trg_len_in_batch, 1]
    "lbl_word": [(batch_size * seq_len, 1), "int64"],
    # This input is used to mask out the loss of paddding tokens.
    # The actual data shape of label_weight is:
    # [batch_size * max_trg_len_in_batch, 1]
    "lbl_weight": [(batch_size * seq_len, 1), "float32"],
    # This input is used in beam-search decoder.
    "init_score": [(batch_size, 1), "float32", 2],
    # This input is used in beam-search decoder for the first gather
    # (cell states updation)
    "init_idx": [(batch_size, ), "int32"],
}

# Names of word embedding table which might be reused for weight sharing.
word_emb_param_names = (
    "src_word_emb_table",
    "trg_word_emb_table", )
# Names of position encoding table which will be initialized externally.
pos_enc_param_names = (
    "src_pos_enc_table",
    "trg_pos_enc_table", )
# separated inputs for different usages.
encoder_data_input_fields = (
    "src_word",
    "src_pos",
    "src_slf_attn_bias", )
decoder_data_input_fields = (
    "trg_word",
    "trg_pos",
    "trg_slf_attn_bias",
    "trg_src_attn_bias",
    "enc_output", )
label_data_input_fields = (
    "lbl_word",
    "lbl_weight", )
# In fast decoder, trg_pos (only containing the current time step) is generated
# by ops and trg_slf_attn_bias is not needed.
fast_decoder_data_input_fields = (
    "trg_word",
    "init_score",
    "init_idx",
    "trg_src_attn_bias", )
# if we use py_reader
use_py_reader = False

# if we run sync mode
sync = False

# how many batches we use
M
minqiyang 已提交
306
batch_num = 1
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

np.random.seed = 1
src_word_np = np.random.randint(
    1,
    ModelHyperParams.src_vocab_size - 1,
    size=(batch_size, seq_len, 1),
    dtype='int64')
src_pos_np = np.random.randint(
    1, seq_len, size=(batch_size, seq_len, 1), dtype='int64')
src_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
                                       seq_len, seq_len).astype('float32')

trg_word_np = np.random.randint(
    1,
    ModelHyperParams.src_vocab_size - 1,
    size=(batch_size, seq_len, 1),
    dtype='int64')
trg_pos_np = np.random.randint(
    1, seq_len, size=(batch_size, seq_len, 1), dtype='int64')
trg_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
                                       seq_len, seq_len).astype('float32')
trg_src_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
                                       seq_len, seq_len).astype('float32')

lbl_word_np = np.random.randint(
    1,
    ModelHyperParams.src_vocab_size - 1,
    size=(batch_size * seq_len, 1),
    dtype='int64')
lbl_weight_np = np.random.randn(batch_size * seq_len, 1).astype('float32')

# np.random.seed = 1
# src_word_np = np.arange(0, 10).reshape([batch_size, seq_len, 1]).astype('int64')
# src_pos_np = np.random.randint(
#     1, seq_len, size=(batch_size, seq_len, 1), dtype='int64')
# src_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
#                                        seq_len, seq_len).astype('float32')
#
# trg_word_np =  np.arange(0, 10).reshape([batch_size, seq_len, 1]).astype('int64')
# trg_pos_np = np.random.randint(
#     1, seq_len, size=(batch_size, seq_len, 1), dtype='int64')
# trg_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
#                                        seq_len, seq_len).astype('float32')
# trg_src_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
#                                        seq_len, seq_len).astype('float32')
#
# lbl_word_np =  np.arange(0, 10).reshape([batch_size * seq_len, 1]).astype('int64')
# lbl_weight_np = np.random.randn(batch_size * seq_len, 1).astype('float32')
#
pos_inp1 = position_encoding_init(ModelHyperParams.max_length,
                                  ModelHyperParams.d_model)
pos_inp2 = position_encoding_init(ModelHyperParams.max_length,
                                  ModelHyperParams.d_model)


class MultiHeadAttentionLayer(Layer):
    def __init__(self,
                 name_scope,
                 d_key,
                 d_value,
                 d_model,
                 n_head=1,
                 dropout_rate=0.,
                 cache=None,
                 gather_idx=None,
                 static_kv=False):
        super(MultiHeadAttentionLayer, self).__init__(name_scope)
        self._n_head = n_head
        self._d_key = d_key
        self._d_value = d_value
        self._d_model = d_model
        self._dropout_rate = dropout_rate
        self._q_fc = FC(name_scope=self.full_name(),
                        size=d_key * n_head,
                        bias_attr=False,
                        num_flatten_dims=2)
        self._k_fc = FC(name_scope=self.full_name(),
                        size=d_key * n_head,
                        bias_attr=False,
                        num_flatten_dims=2)
        self._v_fc = FC(name_scope=self.full_name(),
                        size=d_value * n_head,
                        bias_attr=False,
                        num_flatten_dims=2)
        self._proj_fc = FC(name_scope=self.full_name(),
                           size=self._d_model,
                           bias_attr=False,
                           num_flatten_dims=2)

M
minqiyang 已提交
396 397 398 399 400 401 402 403
    def _mm(self, input):
        input_shape = input.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
        ] + [self._size]
        self.x = self.create_parameter(
            attr=None, shape=param_shape, dtype=self._dtype, is_bias=False)

404 405 406 407 408
    def forward(self, queries, keys, values, attn_bias):
        # compute q ,k ,v
        keys = queries if keys is None else keys
        values = keys if values is None else values

M
minqiyang 已提交
409 410 411
        #  q = queries
        #  k = keys
        #  v = values
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        q = self._q_fc(queries)
        k = self._k_fc(keys)
        v = self._v_fc(values)

        # split head
        reshaped_q = fluid.layers.reshape(
            x=q, shape=[0, 0, self._n_head, self._d_key], inplace=False)
        transpose_q = fluid.layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
        reshaped_k = fluid.layers.reshape(
            x=k, shape=[0, 0, self._n_head, self._d_key], inplace=False)
        transpose_k = fluid.layers.transpose(x=reshaped_k, perm=[0, 2, 1, 3])
        reshaped_v = fluid.layers.reshape(
            x=v, shape=[0, 0, self._n_head, self._d_value], inplace=False)
        transpose_v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3])

        #scale dot product attention
        product = fluid.layers.matmul(
            x=transpose_q,
            y=transpose_k,
            transpose_y=True,
            alpha=self._d_model**-0.5)
        if attn_bias:
            product += attn_bias
        weights = fluid.layers.softmax(product)
        if self._dropout_rate:
            weights_droped = fluid.layers.dropout(
                weights,
                dropout_prob=self._dropout_rate,
                seed=ModelHyperParams.dropout_seed,
                is_test=False)
            out = fluid.layers.matmul(weights_droped, transpose_v)
        else:
            out = fluid.layers.matmul(weights, transpose_v)

        # combine heads
        if len(out.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")
        trans_x = fluid.layers.transpose(out, perm=[0, 2, 1, 3])
        final_out = fluid.layers.reshape(
            x=trans_x,
            shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
            inplace=False)

        # fc to output
M
minqiyang 已提交
456
        print(final_out.shape)
457 458 459 460
        proj_out = self._proj_fc(final_out)
        return proj_out


M
minqiyang 已提交
461 462 463 464 465 466 467 468 469 470 471 472
class PrePostProcessLayer(Layer):
    def __init__(self, name_scope, process_cmd, shape_len=None):
        super(PrePostProcessLayer, self).__init__(name_scope)
        for cmd in process_cmd:
            if cmd == "n":
                self._layer_norm = LayerNorm(
                    name_scope=self.full_name(),
                    begin_norm_axis=shape_len - 1,
                    param_attr=fluid.ParamAttr(
                        initializer=fluid.initializer.Constant(1.)),
                    bias_attr=fluid.ParamAttr(
                        initializer=fluid.initializer.Constant(0.)))
473

M
minqiyang 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487
    def forward(self, prev_out, out, process_cmd, dropout_rate=0.):
        for cmd in process_cmd:
            if cmd == "a":  # add residual connection
                out = out + prev_out if prev_out else out
            elif cmd == "n":  # add layer normalization
                out = self._layer_norm(out)
            elif cmd == "d":  # add dropout
                if dropout_rate:
                    out = fluid.layers.dropout(
                        out,
                        dropout_prob=dropout_rate,
                        seed=ModelHyperParams.dropout_seed,
                        is_test=False)
        return out
488 489 490 491 492 493 494 495 496 497 498


class DecoderSubLayer(Layer):
    def __init__(self,
                 name_scope,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 attention_dropout,
                 cache=None,
M
minqiyang 已提交
499
                 preprocess_cmd="n",
500 501
                 gather_idx=None):
        super(DecoderSubLayer, self).__init__(name_scope)
M
minqiyang 已提交
502 503
        self._preprocess_layer = PrePostProcessLayer(self.full_name(),
                                                     preprocess_cmd, 3)
504 505 506 507 508 509 510 511 512 513
        self._multihead_attention_layer = MultiHeadAttentionLayer(
            self.full_name(),
            d_key,
            d_value,
            d_model,
            n_head,
            attention_dropout,
            cache=cache,
            gather_idx=gather_idx)

M
minqiyang 已提交
514 515 516 517 518 519
    def forward(self, input, slf_attn_bias):
        print(input.shape)
        print(slf_attn_bias.shape)
        y = self._preprocess_layer(None, input, "n", 0.1)
        slf_attn_output = self._multihead_attention_layer(y, None, None,
                                                          slf_attn_bias)
M
minqiyang 已提交
520
        return slf_attn_output, y
521 522


L
lujun 已提交
523
class TestDygraphTransformer(unittest.TestCase):
524 525
    def test_transformer_float32(self):
        seed = 90
M
minqiyang 已提交
526 527 528
        x1 = np.ones([32, 4, 512]).astype('float32')
        x2 = np.ones([32, 8, 4, 4]).astype('float32')
        with guard(place=fluid.CPUPlace()):
529 530
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
M
minqiyang 已提交
531 532 533 534 535
            transformer = DecoderSubLayer(
                'transformer', ModelHyperParams.n_head, ModelHyperParams.d_key,
                ModelHyperParams.d_value, ModelHyperParams.d_model,
                ModelHyperParams.attention_dropout)
            optimizer = fluid.optimizer.SGD(learning_rate=0.003)
536 537 538
            dy_param_init = dict()
            dy_param_updated = dict()
            for i in range(batch_num):
M
minqiyang 已提交
539
                loss, y = transformer(to_variable(x1), to_variable(x2))
M
minqiyang 已提交
540 541
                loss = fluid.layers.reduce_sum(loss)
                print('dy los', loss.shape)
542 543 544 545
                if i == 0:
                    for param in transformer.parameters():
                        dy_param_init[param.name] = param._numpy()

M
minqiyang 已提交
546 547
                loss._backward()
                optimizer.minimize(loss)
M
minqiyang 已提交
548
                dy_key_value = y._gradient()
549 550 551 552 553 554 555 556
                transformer.clear_gradients()
                if i == batch_num - 1:
                    for param in transformer.parameters():
                        dy_param_updated[param.name] = param._numpy()

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
M
minqiyang 已提交
557 558 559 560 561
            transformer = DecoderSubLayer(
                'transformer', ModelHyperParams.n_head, ModelHyperParams.d_key,
                ModelHyperParams.d_value, ModelHyperParams.d_model,
                ModelHyperParams.attention_dropout)
            exe = fluid.Executor(fluid.CPUPlace())
562 563
            optimizer = fluid.optimizer.SGD(learning_rate=0.003)

M
minqiyang 已提交
564 565 566
            data1 = fluid.layers.data(name='X', shape=[4, 512], dtype='float32')
            data2 = fluid.layers.data(
                name='Y', shape=[8, 4, 4], dtype='float32')
M
minqiyang 已提交
567
            loss, y = transformer(data1, data2)
M
minqiyang 已提交
568 569 570 571
            loss = fluid.layers.reduce_sum(loss)
            print('loss hspae', loss.shape)

            optimizer.minimize(loss)
572

M
minqiyang 已提交
573 574 575
            static_param_init = {}
            static_param_name_list = []
            static_param_updated = {}
576 577 578 579
            for param in transformer.parameters():
                static_param_name_list.append(param.name)
            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)
M
minqiyang 已提交
580

581 582
            for i in range(len(static_param_name_list)):
                static_param_init[static_param_name_list[i]] = out[i]
M
minqiyang 已提交
583

M
minqiyang 已提交
584
            print(fluid.default_main_program())
585
            for i in range(batch_num):
M
minqiyang 已提交
586
                feed_dict = {"X": x1, "Y": x2}
M
minqiyang 已提交
587 588 589
                fetch_list = [
                    "transformer/DecoderSubLayer_0/PrePostProcessLayer_0/LayerNorm_0.tmp_2@GRAD"
                ]
590 591 592 593 594 595
                fetch_list.extend(static_param_name_list)

                out = exe.run(fluid.default_main_program(),
                              feed=feed_dict,
                              fetch_list=fetch_list)
                if i == batch_num - 1:
M
minqiyang 已提交
596 597
                    static_key_value = out[0]
                    for k in range(1, len(out)):
598
                        static_param_updated[static_param_name_list[k -
M
minqiyang 已提交
599
                                                                    1]] = out[k]
600 601

        for key, value in six.iteritems(static_param_init):
M
minqiyang 已提交
602
            self.assertTrue(np.array_equal(value, dy_param_init[key]))
603
        for key, value in six.iteritems(static_param_updated):
M
minqiyang 已提交
604 605
            if not (value == dy_param_updated[key]).all():
                print(key)
M
minqiyang 已提交
606 607 608 609 610
        if not np.array_equal(dy_key_value, static_key_value):
            print("xxx", dy_key_value, static_key_value)
            print("yyy")
            print(dy_key_value - static_key_value)
            print(np.where(dy_key_value - static_key_value))
611 612 613 614


if __name__ == '__main__':
    unittest.main()