softmax_cudnn_op.cu 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"

namespace paddle {
namespace platform {
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

namespace paddle {
namespace operators {

using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
using Tensor = framework::Tensor;

#define LAUNCH_SOFTMAX_WARP_FORWARD(Log2Elements)                  \
  case Log2Elements:                                               \
    WarpSoftmaxForward<T, float, Log2Elements><<<                  \
        blocks, threads, 0, ctx.cuda_device_context().stream()>>>( \
        out_data, x->data<T>(), N, dim, dim);                      \
    break;

static inline int SizeOutAxis(const int axis, DDim dims) {
  int size = 1;
  for (int i = axis + 1; i < dims.size(); i++) {
    size *= dims[i];
  }
  return size;
}

int log2_ceil(int value) {
  int log2_value = 0;
  while ((1 << log2_value) < value) ++log2_value;
  return log2_value;
}

template <typename T, int VLEN>
union vec_t {
  static_assert(sizeof(T) == -1, "vec_t is only available by specialization.");
};

template <>
union vec_t<float, 4> {
  float4 s;
  float v[4];
};

template <>
union vec_t<platform::float16, 4> {
  int2 s;
  platform::float16 v[4];
};

template <typename T, typename VECT, int VPT, int WARP_PER_BLOCK>
__global__ void VecSoftmaxForward(T* dst, const T* src, const int batch_size,
                                  const int softmax_ele) {
  int offset = blockIdx.x * softmax_ele * WARP_PER_BLOCK;
  int idx = threadIdx.x * VPT;

  VECT buf = reinterpret_cast<const VECT*>(&src[offset + idx])[0];
  T* bufp = reinterpret_cast<T*>(&buf);
  float4 val4;
  float* val4p = reinterpret_cast<float*>(&val4);
  for (int i = 0; i < VPT; ++i) {
    val4p[i] = static_cast<float>(bufp[i]);
  }
  float val = val4.x + val4.y + val4.z + val4.w;
  float max_val = math::warpReduceMax<float>(
      max(max(val4.x, val4.y), max(val4.z, val4.w)), 0xffffffff);
  float4 tmp4 = make_float4(__expf(val4.x - max_val), __expf(val4.y - max_val),
                            __expf(val4.z - max_val), __expf(val4.w - max_val));
  float* tmp4p = reinterpret_cast<float*>(&tmp4);
  float invsum = 1.f / (math::warpReduceSum<float>(
                            tmp4.x + tmp4.y + tmp4.z + tmp4.w, 0xffffffff) +
                        1e-6f);
  for (int i = 0; i < VPT; ++i) {
    bufp[i] = static_cast<T>(tmp4p[i] * invsum);
  }
  reinterpret_cast<VECT*>(&dst[offset + idx])[0] = buf;
}

template <typename T, int WARP_BATCH, int WARP_SIZE_SOFTMAX>
__device__ __forceinline__ void warp_reduce_sum(T* sum) {
#pragma unroll
  for (int offset = WARP_SIZE_SOFTMAX / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < WARP_BATCH; ++i) {
      T sum_val = platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
      sum[i] = sum[i] + sum_val;
    }
  }
}

template <typename T, int WARP_BATCH, int WARP_SIZE_SOFTMAX>
__device__ __forceinline__ void warp_reduce_max(T* sum) {
#pragma unroll
  for (int offset = WARP_SIZE_SOFTMAX / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < WARP_BATCH; ++i) {
      T max_val = platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
      sum[i] = max(sum[i], max_val);
    }
  }
}

template <typename T, typename AccT, int Log2Elements>
__global__ void WarpSoftmaxForward(T* dst, const T* src, const int batch_size,
                                   const int stride, const int element_count) {
  constexpr int next_power_of_two = 1 << Log2Elements;
  constexpr int warp_size_softmax =
      (next_power_of_two < 32) ? next_power_of_two : 32;
  constexpr int WARP_ITERATIONS = next_power_of_two / warp_size_softmax;
  constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;

  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;

  int local_batches = batch_size - first_batch;
  if (local_batches > WARP_BATCH) {
    local_batches = WARP_BATCH;
  }

  int local_idx = threadIdx.x;

  src += first_batch * stride + local_idx;
  dst += first_batch * stride + local_idx;

  // load data from global memory
  AccT elements[WARP_BATCH][WARP_ITERATIONS];
  for (int i = 0; i < WARP_BATCH; ++i) {
    int batch_element_count = (i >= local_batches) ? 0 : element_count;
    for (int it = 0; it < WARP_ITERATIONS; ++it) {
      int element_index = local_idx + it * warp_size_softmax;
      if (element_index < batch_element_count) {
        elements[i][it] =
            static_cast<float>(src[i * element_count + it * warp_size_softmax]);
      } else {
        elements[i][it] = -std::numeric_limits<AccT>::infinity();
      }
    }
  }

  // compute max_value
  AccT max_value[WARP_BATCH];
#pragma unroll
  for (int i = 0; i < WARP_BATCH; ++i) {
    max_value[i] = elements[i][0];
#pragma unroll
    for (int it = 1; it < WARP_ITERATIONS; ++it) {
      max_value[i] =
          (max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it];
    }
  }
  warp_reduce_max<AccT, WARP_BATCH, warp_size_softmax>(max_value);

  AccT sum[WARP_BATCH]{0.0f};
#pragma unroll
  for (int i = 0; i < WARP_BATCH; ++i) {
#pragma unroll
    for (int it = 0; it < WARP_ITERATIONS; ++it) {
      elements[i][it] = (std::exp((elements[i][it] - max_value[i])));
      sum[i] += elements[i][it];
    }
  }
  warp_reduce_sum<AccT, WARP_BATCH, warp_size_softmax>(sum);

// store result
#pragma unroll
  for (int i = 0; i < WARP_BATCH; ++i) {
    if (i >= local_batches) break;
#pragma unroll
    for (int it = 0; it < WARP_ITERATIONS; ++it) {
      int element_index = local_idx + it * warp_size_softmax;
      if (element_index < element_count) {
        dst[i * element_count + it * warp_size_softmax] =
            elements[i][it] / sum[i];
      } else {
        break;
      }
    }
  }
}

template <typename T, int VPT, int WARP_PER_BLOCK>
__global__ void VecSoftmaxBackward(T* dst, const T* grad, const T* src,
                                   const int batch_size,
                                   const int softmax_ele) {
  const int offset =
      blockIdx.x * softmax_ele * WARP_PER_BLOCK + threadIdx.x * VPT;

  float local_sum_gy = 0.f;
  vec_t<T, VPT> local_grad;
  vec_t<T, VPT> local_src;

  local_grad.s =
      reinterpret_cast<const decltype(local_grad.s)*>(&grad[offset])[0];
  local_src.s = reinterpret_cast<const decltype(local_src.s)*>(&src[offset])[0];

  for (int i = 0; i < VPT; ++i) {
    local_sum_gy += static_cast<float>(local_grad.v[i]) *
                    static_cast<float>(local_src.v[i]);
  }
  float sum_gy = math::warpReduceSum<float>(local_sum_gy, 0xffffffff);

  vec_t<T, VPT> local_dst;
  for (int i = 0; i < VPT; ++i) {
    local_dst.v[i] =
        static_cast<T>(static_cast<float>(local_src.v[i]) *
                       (static_cast<float>(local_grad.v[i]) - sum_gy));
  }
  reinterpret_cast<decltype(local_dst.s)*>(&dst[offset])[0] = local_dst.s;
}

template <typename T>
class SoftmaxCUDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());
    auto* out_data = out->data<T>();

    auto dims = x->dims();
    const int rank = dims.size();
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), rank);
    const int dim = dims[axis];
    const int N = SizeToAxis(axis, dims);
    const int D = SizeOutAxis(axis, dims);

    constexpr int max_dim = 320;
    bool optimize = false;
    constexpr int warps_per_block = 4;
    if (D == 1 && dim <= max_dim && sizeof(T) <= 4) {
      if (dim == 128 && N % warps_per_block == 0) {
        optimize = true;
        // a warp for a batch, 4 elements for a thread, only support the softmax
        // dim size = 128 currently
        if (sizeof(T) == 2) {
          VecSoftmaxForward<T, int2, 4, warps_per_block><<<
              N / warps_per_block, warps_per_block * WARP_SIZE, 0,
              ctx.cuda_device_context().stream()>>>(out_data, x->data<T>(), N,
                                                    dim);
        } else if (sizeof(T) == 4) {
          VecSoftmaxForward<T, int4, 4, warps_per_block><<<
              N / warps_per_block, warps_per_block * WARP_SIZE, 0,
              ctx.cuda_device_context().stream()>>>(out_data, x->data<T>(), N,
                                                    dim);
        } else {
          assert(false && "not support");
        }
      } else if (dim < max_dim) {
        optimize = true;
        int log2_elements = static_cast<int>(log2_ceil(dim));
        const int next_power_of_two = 1 << log2_elements;

        int warp_size = (next_power_of_two < 32) ? next_power_of_two : 32;

        int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;

        // use 128 threads per block to maximimize gpu utilization
        constexpr int threads_per_block = 128;

        int warps_per_block = (threads_per_block / warp_size);
        int batches_per_block = warps_per_block * batches_per_warp;
        int blocks = (N + batches_per_block - 1) / batches_per_block;
        dim3 threads(warp_size, warps_per_block, 1);

        switch (log2_elements) {
          LAUNCH_SOFTMAX_WARP_FORWARD(0);  // 1
          LAUNCH_SOFTMAX_WARP_FORWARD(1);  // 2
          LAUNCH_SOFTMAX_WARP_FORWARD(2);  // 4
          LAUNCH_SOFTMAX_WARP_FORWARD(3);  // 8
          LAUNCH_SOFTMAX_WARP_FORWARD(4);  // 16
          LAUNCH_SOFTMAX_WARP_FORWARD(5);  // 32
          LAUNCH_SOFTMAX_WARP_FORWARD(6);  // 64
          LAUNCH_SOFTMAX_WARP_FORWARD(7);  // 128
          LAUNCH_SOFTMAX_WARP_FORWARD(8);  // 256
          LAUNCH_SOFTMAX_WARP_FORWARD(9);  // 512
          default:
            break;
        }
      }
    }
    if (!optimize) {
      ScopedTensorDescriptor desc;
      std::vector<int> tensor_dims = {N, dim, D, 1};
      DataLayout layout = DataLayout::kNCHW;
      cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);

      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto handle = dev_ctx.cudnn_handle();
      auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                   : CUDNN_SOFTMAX_MODE_CHANNEL;

      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxForward(
          handle, CUDNN_SOFTMAX_ACCURATE, mode,
          platform::CudnnDataType<T>::kOne(), desc_, x->data<T>(),
          platform::CudnnDataType<T>::kZero(), desc_, out_data));
    }
  }
};

template <typename T>
class SoftmaxGradCUDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    dx->mutable_data<T>(ctx.GetPlace());
    auto* dx_data = dx->data<T>();

    auto dims = out->dims();
    const int rank = dims.size();
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), rank);
    const int dim = dims[axis];
    const int N = SizeToAxis(axis, dims);
    const int D = SizeOutAxis(axis, dims);

    constexpr int warps_per_block = 4;
    constexpr bool warp_softmax_available =
        std::is_same<T, float>::value ||
        std::is_same<T, platform::float16>::value;
    if (D == 1 && dim == 128 && N % warps_per_block == 0 &&
        warp_softmax_available) {
      if (std::is_same<T, float>::value) {
        VecSoftmaxBackward<
            float, 4,
            warps_per_block><<<N / warps_per_block, warps_per_block * WARP_SIZE,
                               0, ctx.cuda_device_context().stream()>>>(
            dx->data<float>(), dout->data<float>(), out->data<float>(), N, dim);
      } else if (std::is_same<T, platform::float16>::value) {
        VecSoftmaxBackward<
            platform::float16, 4,
            warps_per_block><<<N / warps_per_block, warps_per_block * WARP_SIZE,
                               0, ctx.cuda_device_context().stream()>>>(
            dx->data<platform::float16>(), dout->data<platform::float16>(),
            out->data<platform::float16>(), N, dim);
      } else {
        PADDLE_ENFORCE_EQ(
            warp_softmax_available, true,
            platform::errors::Unimplemented(
                "Warp softmax backward is only available for fp32 and fp16"));
      }
    } else {
      ScopedTensorDescriptor desc;
      std::vector<int> tensor_dims = {N, dim, D, 1};
      DataLayout layout = DataLayout::kNCHW;
      cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);

      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto handle = dev_ctx.cudnn_handle();
      auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                   : CUDNN_SOFTMAX_MODE_CHANNEL;

      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxBackward(
          handle, CUDNN_SOFTMAX_ACCURATE, mode,
          platform::CudnnDataType<T>::kOne(), desc_, out->data<T>(), desc_,
          dout->data<T>(), platform::CudnnDataType<T>::kZero(), desc_,
          dx_data));
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(softmax, CUDNN, plat::CUDAPlace,
                   ops::SoftmaxCUDNNKernel<float>,
                   ops::SoftmaxCUDNNKernel<double>,
                   ops::SoftmaxCUDNNKernel<plat::float16>);
REGISTER_OP_KERNEL(softmax_grad, CUDNN, plat::CUDAPlace,
                   ops::SoftmaxGradCUDNNKernel<float>,
                   ops::SoftmaxGradCUDNNKernel<double>,
                   ops::SoftmaxGradCUDNNKernel<plat::float16>);