CrossChannelNormLayer.cpp 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
16
#include "NormLayer.h"
X
Xin Pan 已提交
17 18
#include "paddle/legacy/math/BaseMatrix.h"
#include "paddle/legacy/math/Matrix.h"
G
gaoyuan 已提交
19 20 21

namespace paddle {

G
gaoyuan 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
MatrixPtr CrossChannelNormLayer::createSampleMatrix(MatrixPtr data,
                                                    size_t iter,
                                                    size_t spatialDim) {
  return Matrix::create(data->getData() + iter * channels_ * spatialDim,
                        channels_,
                        spatialDim,
                        false,
                        useGpu_);
}

MatrixPtr CrossChannelNormLayer::createSpatialMatrix(MatrixPtr data,
                                                     size_t iter,
                                                     size_t spatialDim) {
  return Matrix::create(
      data->getData() + iter * spatialDim, 1, spatialDim, false, useGpu_);
}

Y
yangyaming 已提交
39 40 41 42 43 44 45 46 47 48
bool CrossChannelNormLayer::init(const LayerMap& layerMap,
                                 const ParameterMap& parameterMap) {
  Layer::init(layerMap, parameterMap);
  CHECK(parameters_[0]);
  const NormConfig& conf = config_.inputs(0).norm_conf();
  channels_ = conf.channels();
  scale_.reset(new Weight(channels_, 1, parameters_[0]));
  return true;
}

49
void CrossChannelNormLayer::forward(PassType passType) {
G
gaoyuan 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63
  Layer::forward(passType);
  MatrixPtr inV = getInputValue(0);

  size_t batchSize = inV->getHeight();
  size_t dataDim = inV->getWidth();
  CHECK_EQ(getSize(), dataDim);

  reserveOutput(batchSize, dataDim);
  MatrixPtr outV = getOutputValue();
  size_t spatialDim = dataDim / channels_;

  Matrix::resizeOrCreate(dataBuffer_, batchSize, dataDim, false, useGpu_);
  Matrix::resizeOrCreate(spatialBuffer_, 1, spatialDim, false, useGpu_);
  Matrix::resizeOrCreate(normBuffer_, batchSize, spatialDim, false, useGpu_);
Y
yangyaming 已提交
64

G
gaoyuan 已提交
65 66
  inV->square2(*dataBuffer_);
  for (size_t i = 0; i < batchSize; i++) {
G
gaoyuan 已提交
67 68 69 70 71
    const MatrixPtr inVTmp = createSampleMatrix(inV, i, spatialDim);
    const MatrixPtr dataTmp = createSampleMatrix(dataBuffer_, i, spatialDim);
    MatrixPtr outVTmp = createSampleMatrix(outV, i, spatialDim);
    MatrixPtr normTmp = createSpatialMatrix(normBuffer_, i, spatialDim);

G
gaoyuan 已提交
72
    // compute norm.
G
gaoyuan 已提交
73
    spatialBuffer_->sumCols(*dataTmp, 1, 0);
Y
yangyaming 已提交
74 75
    // add eps to avoid overflow
    spatialBuffer_->add(1e-6);
G
gaoyuan 已提交
76 77
    spatialBuffer_->sqrt2(*spatialBuffer_);
    normTmp->copyFrom(*spatialBuffer_);
G
gaoyuan 已提交
78 79
    outVTmp->copyFrom(*inVTmp);
    outVTmp->divRowVector(*spatialBuffer_);
G
gaoyuan 已提交
80
    // scale the layer.
G
gaoyuan 已提交
81
    outVTmp->mulColVector(*scale_->getW());
G
gaoyuan 已提交
82 83 84
  }
}

85
void CrossChannelNormLayer::backward(const UpdateCallback& callback) {
G
gaoyuan 已提交
86 87 88 89 90 91 92 93 94
  MatrixPtr inG = getInputGrad(0);
  MatrixPtr inV = getInputValue(0);
  MatrixPtr outG = getOutputGrad();
  MatrixPtr outV = getOutputValue();

  size_t batchSize = inG->getHeight();
  size_t dataDim = inG->getWidth();
  size_t spatialDim = dataDim / channels_;

Y
yangyaming 已提交
95 96 97
  MatrixPtr inGBuffer;
  Matrix::resizeOrCreate(inGBuffer, channels_, spatialDim, false, useGpu_);

G
gaoyuan 已提交
98 99
  dataBuffer_->dotMul(*outG, *outV);
  Matrix::resizeOrCreate(scaleDiff_, channels_, 1, false, useGpu_);
100 101
  Matrix::resizeOrCreate(channelBuffer_, channels_, 1, false, useGpu_);
  Matrix::resizeOrCreate(sampleBuffer_, channels_, spatialDim, false, useGpu_);
G
gaoyuan 已提交
102 103
  scaleDiff_->zeroMem();
  for (size_t i = 0; i < batchSize; i++) {
G
gaoyuan 已提交
104 105 106 107 108 109 110
    MatrixPtr outGTmp = createSampleMatrix(outG, i, spatialDim);
    const MatrixPtr dataTmp = createSampleMatrix(dataBuffer_, i, spatialDim);
    const MatrixPtr inVTmp = createSampleMatrix(inV, i, spatialDim);
    const MatrixPtr inGTmp = createSampleMatrix(inG, i, spatialDim);
    const MatrixPtr normTmp = createSpatialMatrix(normBuffer_, i, spatialDim);

    channelBuffer_->sumRows(*dataTmp, 1, 0);
G
gaoyuan 已提交
111 112 113 114
    channelBuffer_->dotDiv(*channelBuffer_, *(scale_->getW()));
    // store a / scale[i] in scaleDiff_ temporary
    scaleDiff_->add(*channelBuffer_, 1.);

G
gaoyuan 已提交
115
    sampleBuffer_->dotMul(*inVTmp, *outGTmp);
Y
yangyaming 已提交
116
    spatialBuffer_->sumCols(*sampleBuffer_, 1., 0.);
G
gaoyuan 已提交
117
    // scale the grad
Y
yangyaming 已提交
118 119
    inGBuffer->copyFrom(*inVTmp);
    inGBuffer->mulRowVector(*spatialBuffer_);
G
gaoyuan 已提交
120 121
    // divide by square of norm
    spatialBuffer_->dotMul(*normTmp, *normTmp);
Y
yangyaming 已提交
122
    inGBuffer->divRowVector(*spatialBuffer_);
G
gaoyuan 已提交
123
    // subtract
Y
yangyaming 已提交
124
    inGBuffer->add(*outGTmp, -1, 1);
G
gaoyuan 已提交
125
    // divide by norm
Y
yangyaming 已提交
126
    inGBuffer->divRowVector(*normTmp);
G
gaoyuan 已提交
127
    // scale the diff
Y
yangyaming 已提交
128 129 130
    inGBuffer->mulColVector(*scale_->getW());

    inGTmp->add(*inGBuffer);
G
gaoyuan 已提交
131 132
  }
  // updata scale
Y
yangyaming 已提交
133
  if (scale_->getWGrad()) scale_->getWGrad()->add(*scaleDiff_);
G
gaoyuan 已提交
134 135 136 137
  scale_->getParameterPtr()->incUpdate(callback);
}

}  // namespace paddle