the_one_ps.py 38.8 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings

import os
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
from .runtime_base import RuntimeBase
from ..base.private_helper_function import wait_server_ready


def conv_indent(indent):
    return "".join([" "] * indent)


33 34 35
PSERVER_SAVE_SUFFIX = "_txt"


T
tangwei12 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
class Accessor:
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
        self.feature_dim = -1
        self.embedding_dim = -1
        self.optimizer = None

    def to_string(self, indent):
        accessor_str = "{}accessor {{{}\n{}}}"
        attrs = ""
        attrs += "accessor_class: \"{}\" ".format(self.accessor_class)
        attrs += "fea_dim: {} ".format(self.feature_dim)
        attrs += "embedx_dim: {} ".format(self.embedding_dim)
        attrs += "\n"
        if self.optimizer is not None:
            attrs += self.optimizer.to_string(indent)
        return accessor_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


class CommonAccessor:
    def __init__(self):
        self.accessor_class = ""
        self.table_name = None
T
tangwei12 已提交
61
        self.entry = None
T
tangwei12 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
        self.sync = "false"
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
        opt_input_map["sum"] = [("Param", None)]

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

T
tangwei12 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    def parse_entry(self, varname, o_main_program):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_distributed_sparse_op
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_sparse_op

        for op in o_main_program.global_block().ops:
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

T
tangwei12 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    def get_shard(self, total_dim, shard_num, pserver_id):
        # remainder = total_dim % shard_num
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
                for attr in self.opt_init_map[op.type]:
                    init_attr.append(str(op.attr(attr)))
                attr_str = l_in.join(init_attr)
                break
        return attr_str

    def parse_by_optimizer(self, grad_name, is_sparse, total_dims,
                           compiled_strategy):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops
        param_name = compiled_strategy.grad_name_to_param_name[grad_name]
        main_program, startup_program = compiled_strategy.get_origin_programs()
        pserver_id = compiled_strategy.get_role_id()
        pserver_num = len(compiled_strategy.get_ps_endpoints())
        optimizer_ops = _get_optimize_ops(main_program)
        oop = None

        for op in optimizer_ops:
153 154
            if ("Param" in op.input_names) and (
                    op.input("Param")[0] == param_name):
T
tangwei12 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = compiled_strategy.get_trainers()

        if compiled_strategy.is_geo_mode():
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        else:
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            param = main_program.global_block().vars[oop.input(formal_name)[0]]
            if formal_name == "LearningRate" and param.name != "learning_rate_0":
                warnings.warn("will support decay soon")
                param = main_program.global_block().vars["learning_rate_0"]

            if shape is None:
                if is_sparse:
                    shape = total_dims
                else:
                    shape = self.get_shard(total_dims, pserver_num, pserver_id)
            dims.append(shape)

C
Chengmo 已提交
191
            initializer = self.get_initializer_attr(param.name, startup_program)
T
tangwei12 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
            initializers.append(initializer)

        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
            attrs.append("&".join([attr_varname, type_, str(value)]))

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

    def to_string(self, indent):
        accessor_str = "{}common {{{}\n{}}}"
        attrs = ""
        attrs += "name: \"{}\" ".format(self.accessor_class)

        if self.table_name:
            attrs += "table_name: \"{}\" ".format(self.table_name)

T
tangwei12 已提交
211 212
        if self.entry:
            attrs += "entry: \"{}\" ".format(self.entry)
T
tangwei12 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        attrs += "trainer_num: {} ".format(self.trainer_num)
        attrs += "sync: {} ".format(self.sync)

        for param in self.params:
            attrs += "params: \"{}\" ".format(param)

        for dim in self.dims:
            attrs += "dims: {} ".format(dim)

        for initializer in self.initializers:
            attrs += "initializers: \"{}\" ".format(initializer)

        attrs += "\n"
        return accessor_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
class Tensor:
    def __init__(self):
        self.main_program_id = None
        self.startup_program_id = None
        self.feed_var_name = None
        self.fetch_var_name = None
        self.tensor_table_class = False

    def to_string(self, indent):
        program_str = "{}tensor {{{}\n{}}}"
        attrs = ""
        attrs += "feed_var_name: \"{}\" ".format(str(self.feed_var_name))
        attrs += "fetch_var_name: \"{}\" ".format(str(self.fetch_var_name))
        attrs += "startup_program_id: {} ".format(str(self.startup_program_id))
        attrs += "main_program_id: {} ".format(str(self.main_program_id))
        attrs += "tensor_table_class: \"{}\" ".format(
            str(self.tensor_table_class))
        attrs += "\n"
        return program_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


T
tangwei12 已提交
252 253 254 255 256 257 258 259
class Table:
    def __init__(self):
        self.id = -1
        self.table_class = None
        self.shard_num = -1
        self.type = None
        self.accessor = None
        self.common = None
260
        self.tensor = None
T
tangwei12 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

    def to_string(self, indent):
        table_str = "{}downpour_table_param {{{}\n{}}}"

        attrs = ""
        attrs += "table_id: {} ".format(self.id)
        attrs += "table_class: \"{}\" ".format(self.table_class)
        attrs += "shard_num: {} ".format(self.shard_num)
        attrs += "type: {}".format(self.type)
        attrs += "\n"
        indent += 2

        if self.accessor is not None:
            attrs += self.accessor.to_string(indent)
            attrs += "\n"

277 278 279 280
        if self.tensor is not None:
            attrs += self.tensor.to_string(indent)
            attrs += "\n"

T
tangwei12 已提交
281 282 283 284 285 286 287 288 289 290 291
        if self.common is not None:
            attrs += self.common.to_string(indent)
            attrs += "\n"

        return table_str.format(conv_indent(indent), attrs, conv_indent(indent))


class Service:
    def __init__(self):
        self.server_class = "BrpcPsServer"
        self.client_class = "BrpcPsClient"
T
tangwei12 已提交
292
        self.service_class = "BrpcPsService"
T
tangwei12 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        self.start_server_port = 0
        self.server_thread_num = 12

    def to_string(self, indent):
        service_str = "{}service_param {{{}\n{}}}"

        attrs = ""
        attrs += "server_class: \"{}\" ".format(self.server_class)
        attrs += "client_class: \"{}\" ".format(self.client_class)
        attrs += "service_class: \"{}\" ".format(self.service_class)
        attrs += "start_server_port: {} ".format(self.start_server_port)
        attrs += "server_thread_num: {} ".format(self.server_thread_num)

        return service_str.format(
            conv_indent(indent), attrs, conv_indent(indent))


class DownpourServer:
    def __init__(self):
        self.service = None
        self.tables = []

    def set_service_param(self, service):
        self.service = service

    def append_tables(self, table):
        if not isinstance(table, Table):
            raise ValueError("only support instance Table")
        self.tables.append(table)

    def to_string(self, indent):
        server_str = "{}downpour_server_param {{{}\n{}}}"

        table_strs = ""
        indent += 2

        table_strs += "\n"
        table_strs += self.service.to_string(indent)

        for table in self.tables:
            table_strs += "\n"
            table_strs += table.to_string(indent)
        return server_str.format(
            conv_indent(indent), table_strs, conv_indent(indent))


class Server:
    def __init__(self):
        self.servers = []

    def add_server(self, server):
        if not isinstance(server, DownpourServer):
            raise ValueError("only support instance DownpourServer")
        self.servers.append(server)

    def __str__(self):
        server_str = "server_param {{{}\n}}"
        indent = 2
        servers_str = ""
        for server in self.servers:
            servers_str += "\n"
            servers_str += server.to_string(indent)

        return server_str.format(servers_str)


class DownpourWorker:
    def __init__(self):
        self.tables = []

    def append_tables(self, table):
        if not isinstance(table, Table):
            raise ValueError("only support instance Table")
        self.tables.append(table)

    def to_string(self, indent):
        worker_str = "{}downpour_worker_param {{{}\n{}}}"
        table_strs = ""
        indent += 2
        for table in self.tables:
            table_strs += "\n"
            table_strs += table.to_string(indent)

        return worker_str.format(
            conv_indent(indent), table_strs, conv_indent(indent))


class Worker:
    def __init__(self):
        self.workers = []

    def add_worker(self, worker):
        if not isinstance(worker, DownpourWorker):
            raise ValueError("only support instance DownpourWorker")
        self.workers.append(worker)

    def __str__(self):
        worker_str = "worker_param {{{}\n}}"
        indent = 2
        workers_str = ""
        for worker in self.workers:
            workers_str += "\n"
            workers_str += worker.to_string(indent)

        return worker_str.format(workers_str)


class TheOnePSRuntime(RuntimeBase):
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
406
        self._server_sub_program = []
T
tangwei12 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        self._heter_client = None

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
        self.origin_main_program = context["origin_main_program"]
        self.origin_startup_program = context["origin_startup_program"]
        self.async_strategy = self._get_distributed_strategy()
        self.compiled_strategy = self.build_compiled_startegy()

    def _get_distributed_strategy(self):
        strategy = None

        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
            StrategyFactory

        dist_strategy = self.context["valid_strategy"]
        k_steps = dist_strategy.a_sync_configs["k_steps"]

        if not dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if dist_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if dist_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

        return strategy

    def build_compiled_startegy(self):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy

        compiled_config = CompileTimeStrategy(
            self.origin_main_program, self.origin_main_program,
            self.async_strategy, self.role_maker)
        return compiled_config

    def _init_worker(self):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \
            SyncStrategy, GeoStrategy

        is_sync = self.compiled_strategy.is_sync_mode()
        worker = self._get_fleet_proto(is_server=False, is_sync=is_sync)
        server = self._get_fleet_proto(is_server=True, is_sync=is_sync)

T
Thunderbrook 已提交
456 457 458 459 460 461 462 463 464 465 466
        dist_strategy = self.context["valid_strategy"]
        use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"]
        if use_ps_gpu:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
            main_program._fleet_opt[
                "worker_places"] = [int(s) for s in gpus_env.split(",")]

T
tangwei12 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        proto_txt = str(worker) + "\n" + str(server)

        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))

        if debug:
            print("worker: \n{}".format(proto_txt))

        endpoints = self.compiled_strategy.get_ps_endpoints()

        string_hosts = []
        for idx, ep in enumerate(endpoints):
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            string_hosts.append(pshost.serialize_to_string())

        dense_map = self.compiled_strategy.get_the_one_recv_context(
            split_dense_table=self.role_maker._is_heter_parameter_server_mode)
        send_ctx = self.compiled_strategy.get_the_one_send_context(
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            ep_list=endpoints)
        trainer_config = self.async_strategy.get_trainer_runtime_config()

        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))

        if debug:
            print("worker: \n{}".format(proto_txt))
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()
        if self.role_maker._is_heter_worker():
            kwargs["trainer_id"] += kwargs["trainers"]

        for table in server.servers[0].tables:
            if table.table_class == "BarrierTable":
                kwargs["barrier_table_id"] = table.id
                break

        if isinstance(self.async_strategy, SyncStrategy):
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

        from paddle.fluid.communicator import Communicator, HeterClient
        self._communicator = Communicator(
            trainer_config.mode, kwargs,
            trainer_config.get_communicator_flags())
        self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt,
                                         string_hosts, fluid.global_scope())

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

        if self.role_maker._is_first_worker(
        ) and self.role_maker._is_heter_parameter_server_mode:
            # for ps-heter mode load all parameters on first_worker
            init_params = self.compiled_strategy.get_the_one_recv_context(
                split_dense_table=True, use_origin_program=True)
        else:
            init_params = dense_map

        if not is_test:
            self._communicator.init_params(init_params)

        if not self._communicator.is_running():
            self._communicator.start()
        else:
            warnings.warn("communicator has been initialized, skip")

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            # for trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())

            # for ps-heter mode, wait heter worker ready
            if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker(
            ):
                wait_server_ready(self.role_maker._get_heter_worker_endpoints())

                self._heter_client = HeterClient(
                    self.role_maker._get_heter_worker_endpoints(),
                    self.role_maker._role_id())

    def _push_sparse_param(self,
                           var_name,
                           table_id=-1,
                           scope=fluid.global_scope()):
        self._communicator.push_sparse_param(var_name, table_id, scope)

    def _get_executor(self):
        executor = fluid.Executor(fluid.CPUPlace())
        if self.role_maker._is_heter_parameter_server_mode:
            heter_worker_device_guard = self.context[
                "valid_strategy"].a_sync_configs[
                    "heter_worker_device_guard"].upper()
            if heter_worker_device_guard not in ["GPU", "XPU", "CPU"]:
                raise ValueError("Heter Worker Not Support Device {}".format(
                    heter_worker_device_guard))
            if self.role_maker._is_heter_worker():
                if heter_worker_device_guard == "GPU":
                    executor = Executor(
                        fluid.CUDAPlace(
                            int(os.getenv("FLAGS_selected_gpus", "0"))))
                elif heter_worker_device_guard == "XPU":
                    executor = Executor(
                        fluid.XPUPlace(
                            int(os.getenv("FLAGS_selected_xpus", "0"))))
        return executor

    def _get_fleet_proto(self, is_server, is_sync):
        def _build_merge_accessor(ctx):
            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None

            if ctx.is_sparse():
                accessor.feature_dim = ctx.sections()[0]
                accessor.embedding_dim = ctx.sections()[1]
            else:
                accessor.feature_dim = ctx.sections()[0]
                accessor.embedding_dim = 1

            return accessor

        def _build_barrier_table(idx):
            table = Table()
            table.id = idx
            table.type = "PS_OTHER_TABLE"
            table.table_class = "BarrierTable"
            table.shard_num = 256

            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None
            accessor.feature_dim = 0
            accessor.embedding_dim = 0
            table.accessor = accessor

            common = CommonAccessor()
            common.table_name = "barrier_table"
            trainer_num = self.compiled_strategy.get_trainers()
            if self.role_maker._is_heter_parameter_server_mode:
                trainer_num += len(self.role_maker._get_heter_worker_endpoints(
                ))
            common.trainer_num = trainer_num
            common.attrs = ""
            common.dims = []
            common.params = []
            table.common = common
            return table

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
        def _build_tensor_table(idx, tensor_dict):
            table = Table()
            table.id = idx
            table.type = "PS_OTHER_TABLE"
            table.table_class = tensor_dict["tensor_table_class"]
            table.shard_num = 256

            accessor = Accessor()
            accessor.accessor_class = "CommMergeAccessor"
            accessor.optimizer = None
            accessor.feature_dim = 0
            accessor.embedding_dim = 0
            table.accessor = accessor

            common = CommonAccessor()
            common.table_name = tensor_dict["feed_var_name"]
            common.trainer_num = self.compiled_strategy.get_trainers()
            common.attrs = ""
            common.dims = []
            common.params = []
            table.common = common

            tensor = Tensor()
            tensor.main_program_id = tensor_dict["main_program_id"]
            tensor.startup_program_id = tensor_dict["startup_program_id"]
            tensor.feed_var_name = tensor_dict["feed_var_name"]
            tensor.fetch_var_name = tensor_dict["fetch_var_name"]
            tensor.tensor_table_class = tensor_dict["tensor_table_class"]
            table.tensor = tensor

            return table

        def _add_tensor_table(tables):
            tensor_table_dict = self.compiled_strategy.get_tensor_table_dict()
            program_idx = 0
            for table_name in tensor_table_dict:
                if tensor_table_dict[table_name]["startup_program"] != None:
                    tensor_table_dict[table_name][
                        "startup_program_id"] = program_idx
                    self._server_sub_program.append(tensor_table_dict[
                        table_name]["startup_program"].desc)
                    program_idx += 1
                if tensor_table_dict[table_name]["main_program"] != None:
                    tensor_table_dict[table_name][
                        "main_program_id"] = program_idx
                    self._server_sub_program.append(tensor_table_dict[
                        table_name]["main_program"].desc)
                    program_idx += 1
                # Todo: Hard code for lr_decay table apply table id
                new_table = _build_tensor_table(
                    len(tables), tensor_table_dict[table_name])
                tables.append(new_table)
            return tables

T
tangwei12 已提交
686 687 688 689 690
        def _get_tables():
            send_ctx = self.compiled_strategy.get_the_one_send_context(
                use_origin_program=True,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode)
T
tangwei12 已提交
691

692
            tables = []
T
tangwei12 已提交
693
            for idx, (name, ctx) in enumerate(send_ctx.items()):
T
tangwei12 已提交
694 695 696
                if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1:
                    continue

T
tangwei12 已提交
697 698
                table = Table()
                table.id = ctx.table_id()
T
tangwei12 已提交
699
                common = CommonAccessor()
700

T
tangwei12 已提交
701 702
                if ctx.is_sparse():
                    table.type = "PS_SPARSE_TABLE"
T
tangwei12 已提交
703
                    table.shard_num = 256
T
tangwei12 已提交
704 705 706 707 708 709 710 711 712

                    if self.compiled_strategy.is_geo_mode():
                        table.table_class = "SparseGeoTable"
                    else:
                        table.table_class = "CommonSparseTable"

                    common.table_name = self.compiled_strategy.grad_name_to_param_name[
                        ctx.origin_varnames()[0]]
                else:
T
tangwei12 已提交
713 714 715
                    table.type = "PS_DENSE_TABLE"
                    table.table_class = "CommonDenseTable"
                    table.shard_num = 256
T
tangwei12 已提交
716 717 718 719 720 721 722 723
                    common.table_name = "MergedDense"

                common.parse_by_optimizer(ctx.origin_varnames()[0],
                                          ctx.is_sparse(),
                                          ctx.sections()[1] if ctx.is_sparse()
                                          else ctx.sections()[0],
                                          self.compiled_strategy)

T
tangwei12 已提交
724 725 726 727
                if ctx.is_sparse():
                    common.parse_entry(common.table_name,
                                       self.origin_main_program)

T
tangwei12 已提交
728 729 730 731 732 733 734 735 736
                if is_sync:
                    common.sync = "true"
                else:
                    common.sync = "false"

                table.common = common

                accessor = _build_merge_accessor(ctx)
                table.accessor = accessor
737 738 739 740 741 742 743 744
                tables.append(table)

            tensor_table_dict = self.compiled_strategy.get_tensor_table_dict()
            if len(tensor_table_dict) > 0:
                tables = _add_tensor_table(tables)
            else:
                empty_porgram = Program()
                self._server_sub_program.append(empty_porgram.desc)
T
tangwei12 已提交
745

746 747
            barrier_table = _build_barrier_table(len(tables))
            tables.append(barrier_table)
T
tangwei12 已提交
748 749 750 751 752 753 754
            return tables

        if is_server:
            server = Server()
            downpour_server = DownpourServer()

            service = Service()
T
Thunderbrook 已提交
755 756 757 758 759
            dist_strategy = self.context["valid_strategy"]
            use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"]
            if use_ps_gpu:
                service.server_class = "PsLocalServer"
                service.client_class = "PsLocalClient"
T
tangwei12 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
            downpour_server.set_service_param(service)

            tables = _get_tables()
            downpour_server.tables = tables
            server.add_server(downpour_server)
            return server
        else:
            worker = Worker()
            downpour_worker = DownpourWorker()

            tables = _get_tables()
            downpour_worker.tables = tables
            worker.add_worker(downpour_worker)
            return worker

    def _init_server(self, dirname=None, var_names=None, **kwargs):
        if self.role_maker._is_heter_worker():
            self._init_heter_worker()
            return
        role_id = self.compiled_strategy.get_role_id()
        endpoints = self.compiled_strategy.get_ps_endpoints()
        is_sync = self.compiled_strategy.is_sync_mode()
T
tangwei12 已提交
782
        trainers = self.compiled_strategy.get_trainers()
T
tangwei12 已提交
783 784 785 786

        server = self._get_fleet_proto(is_server=True, is_sync=is_sync)
        proto_txt = str(server)

T
tangwei12 已提交
787
        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
T
tangwei12 已提交
788 789 790 791 792 793 794 795 796 797
        if debug:
            print("server: \n{}".format(proto_txt))

        string_hosts = []
        for idx, ep in enumerate(endpoints):
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            string_hosts.append(pshost.serialize_to_string())

        self._server = fluid.core.DistFleetWrapper()
T
tangwei12 已提交
798
        self._server.init_server(proto_txt, string_hosts, role_id, trainers,
799
                                 self._server_sub_program)
T
tangwei12 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832

        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames

        dist_varnames = get_sparse_tablenames(self.origin_main_program, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_program, False)

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
                        "fleet.init server can only load sparse variables in {}".
                        format(distributed_varnames))
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

        sparse_table_maps = {}
        for table in server.servers[0].tables:
            if table.type == "PS_SPARSE_TABLE" and table.common is not None:
                sparse_table_maps[table.common.table_name] = table.id

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        import time
        begin = time.time()
        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
833
            path = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX,
T
tangwei12 已提交
834
                                "{}.block{}.txt".format(var_name, pserver_id))
835
            meta = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX,
T
tangwei12 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
                                "{}.block{}.meta".format(var_name, pserver_id))
            self._server.load_sparse(path, meta, table_id)
        end = time.time()
        print("init sparse variables: {} cost time: {}".format(load_varnames,
                                                               end - begin))

    def _run_server(self):
        if self.role_maker._is_heter_worker():
            self._run_heter_worker()
            return

        ep = self.compiled_strategy.get_ps_endpoint()
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _init_heter_worker(self):
        executor = self._get_executor()
        executor.run(fluid.default_startup_program())
        self._init_worker()

    def _run_heter_worker(self):
        executor = self._get_executor()
        executor.run(fluid.default_main_program())

    def _stop_worker(self):
        self._communicator.stop()
        if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker(
        ):
            self._heter_client.stop()
        executor = self._get_executor()
        executor.close()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

            from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts

            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

            if origin_varname == "learning_rate_0":
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

891 892 893 894 895
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
        from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames
        distributed_varnames = get_sparse_tablenames(
            self.compiled_strategy.origin_main_program, True)
T
tangwei12 已提交
896 897
        values = []
        for id, names in context.items():
898 899 900 901 902
            if names not in distributed_varnames:
                # only save sparse param to local
                self._worker.recv_and_save_model(id, dirname)
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
T
tangwei12 已提交
903 904 905
            values.extend(names)
        return values

906 907 908 909 910
    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
                                       main_program,
                                       mode=0):
T
tangwei12 已提交
911 912 913 914 915 916 917 918 919 920

        denses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=True,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)
        sparses = self.compiled_strategy.get_the_one_recv_context(
            is_dense=False,
            split_dense_table=self.role_maker._is_heter_parameter_server_mode,
            use_origin_program=True)

921 922
        sparse_varnames = self._save_sparse_params(executor, dirname, sparses,
                                                   main_program, mode)
T
tangwei12 已提交
923 924 925 926 927

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)

928
        saved_varnames = sparse_varnames
T
tangwei12 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(saved_varnames),
                main_program.list_vars()))

        fluid.io.save_vars(
            executor,
            main_program=main_program,
            dirname=dirname,
            vars=remaining_vars)

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
                                        mode=0,
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save_persistables() function, executor must be as Executor type"
            )

        if main_program is None:
            main_program = self.compiled_strategy.get_origin_ps_main_program()

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

976
        # Todo(MrChengmo): Save optimizer status
T
tangwei12 已提交
977 978 979 980 981 982 983 984 985
        self._save_distributed_persistables(executor, dirname, main_program,
                                            mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
986 987
                                           export_for_deployment=True,
                                           mode=0):
T
tangwei12 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save_inference_model() function, executor must be as Executor type"
            )

        if main_program is not None:
            if isinstance(main_program, CompiledProgram):
                raise TypeError(
                    "in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed"
                )
            fluid.io.save_inference_model(dirname, feeded_var_names,
                                          target_vars, executor, main_program,
                                          None, None, export_for_deployment)
        else:
            fluid.io.save_inference_model(dirname, feeded_var_names,
                                          target_vars, executor,
                                          self.origin_main_program, None, None,
                                          export_for_deployment, True)
            model_basename = "__model__"
            model_filename = os.path.join(dirname, model_basename)

            with open(model_filename, "rb") as f:
                program_desc_str = f.read()

            program = Program.parse_from_string(program_desc_str)
            program._copy_dist_param_info_from(fluid.default_main_program())
1024 1025
            self._ps_inference_save_persistables(executor, dirname, program,
                                                 mode)
T
tangwei12 已提交
1026 1027 1028 1029 1030 1031

    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

    def _shrink(self, threshold):
        import paddle.distributed.fleet as fleet
        fleet.util.barrier()
        if self.role_maker._is_first_worker():
            sparses = self.compiled_strategy.get_the_one_recv_context(
                is_dense=False,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode,
                use_origin_program=True)

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()