softmax_with_cross_entropy_op.h 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
caoying03 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
caoying03 已提交
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/softmax.h"
20
#include "paddle/fluid/operators/softmax_op.h"
C
caoying03 已提交
21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

30
template <typename T>
Y
Yu Yang 已提交
31
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
C
caoying03 已提交
32
 public:
C
caoying03 已提交
33
  void Compute(const framework::ExecutionContext& context) const override {
C
caoying03 已提交
34
    PADDLE_ENFORCE(platform::is_cpu_place(context.GetPlace()),
35
                   "This kernel only runs on CPU.");
C
caoying03 已提交
36
    const Tensor* logits = context.Input<Tensor>("Logits");
37
    const Tensor* labels = context.Input<Tensor>("Label");
C
caoying03 已提交
38
    Tensor* softmax = context.Output<Tensor>("Softmax");
39
    Tensor* loss = context.Output<Tensor>("Loss");
40 41 42 43 44
    const bool soft_label = context.Attr<bool>("soft_label");

    const int rank = logits->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
    int axis_dim = logits->dims()[axis];
C
caoying03 已提交
45

46 47
    softmax->mutable_data<T>(context.GetPlace());
    loss->mutable_data<T>(context.GetPlace());
C
caoying03 已提交
48

49 50 51 52 53 54 55
    const int n = SizeToAxis(axis, logits->dims());
    const int d = SizeFromAxis(axis, logits->dims());
    Tensor logits_2d, softmax_2d, labels_2d, loss_2d;
    logits_2d.ShareDataWith(*logits).Resize({n, d});
    softmax_2d.ShareDataWith(*softmax).Resize({n, d});
    labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
    loss_2d.ShareDataWith(*loss).Resize({n, d / axis_dim});
D
dengkaipeng 已提交
56

Q
QI JUN 已提交
57 58
    auto& dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
59
    math::SoftmaxFunctor<platform::CPUDeviceContext, T, false>()(
60
        dev_ctx, axis_dim, &logits_2d, &softmax_2d);
Q
QI JUN 已提交
61
    math::CrossEntropyFunctor<platform::CPUDeviceContext, T>()(
62 63
        dev_ctx, &loss_2d, &softmax_2d, &labels_2d, soft_label,
        context.Attr<int>("ignore_index"), axis_dim);
C
caoying03 已提交
64
  }
C
caoying03 已提交
65 66
};

67
template <typename T>
Y
Yu Yang 已提交
68
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
C
caoying03 已提交
69
 public:
70
  void Compute(const framework::ExecutionContext& context) const override {
71 72 73
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Loss"));
    const Tensor* labels = context.Input<Tensor>("Label");
74 75
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
Z
Zeng Jinle 已提交
76 77 78 79 80 81

    const Tensor* softmax = context.Input<Tensor>("Softmax");
    if (logit_grad != softmax) {
      framework::TensorCopy(*softmax, context.GetPlace(),
                            context.device_context(), logit_grad);
    }
82

83 84 85 86 87 88 89 90 91 92 93 94
    const bool soft_label = context.Attr<bool>("soft_label");

    const int rank = logit_grad->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
    int axis_dim = logit_grad->dims()[axis];

    const int n = SizeToAxis(axis, logit_grad->dims());
    const int d = SizeFromAxis(axis, logit_grad->dims());
    Tensor logit_grad_2d, labels_2d, out_grad_2d;
    logit_grad_2d.ShareDataWith(*logit_grad).Resize({n, d});
    labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
    out_grad_2d.ShareDataWith(*out_grad).Resize({n, d / axis_dim});
95 96 97

    auto out_grad_mat = EigenMatrix<T>::From(out_grad_2d);
    auto logit_grad_mat = EigenMatrix<T>::From(logit_grad_2d);
Q
QI JUN 已提交
98 99
    auto& place = *context.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
100
    if (soft_label) {
101
      auto lbl_mat = EigenMatrix<T>::From(labels_2d);
Q
QI JUN 已提交
102
      logit_grad_mat.device(place) =
103
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim)) *
C
caoying03 已提交
104
          (logit_grad_mat - lbl_mat);
105
    } else {
Q
QI JUN 已提交
106
      logit_grad_mat.device(place) =
C
caoying03 已提交
107
          logit_grad_mat *
108
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim));
109

C
caoying03 已提交
110
      const int64_t* label_data = labels->data<int64_t>();
111
      T* logit_grad_data = logit_grad->data<T>();
C
caoying03 已提交
112
      const T* out_grad_data = out_grad->data<T>();
113 114 115 116 117 118 119
      const int remain = d / axis_dim;
      for (int i = 0; i < n; ++i) {
        for (int j = 0; j < remain; j++) {
          int idx = i * remain + j;
          logit_grad_data[i * d + label_data[idx] * remain + j] -=
              out_grad_data[idx];
        }
120
      }
121 122
    }
  }
C
caoying03 已提交
123 124 125 126
};

}  // namespace operators
}  // namespace paddle