the_one_ps.py 63.1 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
ziyoujiyi 已提交
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Z
ziyoujiyi 已提交
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
Z
ziyoujiyi 已提交
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
ziyoujiyi 已提交
14 15 16 17 18

import warnings

import os
import paddle.fluid as fluid
Z
ziyoujiyi 已提交
19
from paddle.distributed import fleet
Z
ziyoujiyi 已提交
20
from paddle.fluid import core
Z
ziyoujiyi 已提交
21
from paddle.distributed.ps.utils.public import *
Z
ziyoujiyi 已提交
22 23 24 25 26
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
W
wangguanqun 已提交
27 28
from paddle.distributed.fleet.runtime.runtime_base import RuntimeBase
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
Z
ziyoujiyi 已提交
29
from paddle.distributed.fleet.proto import the_one_ps_pb2
Z
ziyoujiyi 已提交
30 31
from paddle.fluid.communicator import Communicator, HeterClient
from google.protobuf import text_format
32
from paddle.distributed.ps.coordinator import Coordinator
Z
ziyoujiyi 已提交
33

Z
ziyoujiyi 已提交
34 35 36 37
__all__ = [
    'Table', 'SparseTable', 'GeoSparseTable', 'BarrierTable', 'TensorTable',
    'DenseTable'
]
Z
ziyoujiyi 已提交
38 39


W
wangguanqun 已提交
40 41 42 43
def get_program_by_id(context, program_id):
    programs = context["origin_main_programs"]
    for i, program in enumerate(programs):
        if id(program) == program_id:
44 45
            return program, context["origin_startup_programs"][i], i
    return None, None, None
W
wangguanqun 已提交
46 47 48


def parse_table_class(varname, program_id, context):
49
    main_program, startup_program, idx = get_program_by_id(context, program_id)
W
wangguanqun 已提交
50
    for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
51 52 53 54 55 56 57 58 59 60 61 62
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "MemorySparseTable"


Z
ziyoujiyi 已提交
63
def check_embedding_dim(accessor_proto, varname, program_id, context):
64
    main_program, startup_program, idx = get_program_by_id(context, program_id)
Z
ziyoujiyi 已提交
65
    embedding_dim = 0
W
wangguanqun 已提交
66
    for var in main_program.list_vars():
Z
ziyoujiyi 已提交
67 68
        if var.name == varname:
            embedding_dim = var.shape[1]
Z
ziyoujiyi 已提交
69 70
            print('new var: {}, {}, {}'.format(var, embedding_dim,
                                               accessor_proto.fea_dim))
Z
ziyoujiyi 已提交
71
            break
72

Z
ziyoujiyi 已提交
73
    fea_dim = accessor_proto.fea_dim
74 75 76
    if accessor_proto.accessor_class == "SparseAccessor":
        if fea_dim != embedding_dim + 2:
            raise ValueError(
77 78
                "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}"
                .format(embedding_dim + 2, fea_dim))
79 80 81
    else:
        if fea_dim != embedding_dim:
            raise ValueError(
82 83
                "The fea_dim is wrong, it will be sparse_embedding_dim: {}, but got {}"
                .format(embedding_dim, fea_dim))
84

Z
ziyoujiyi 已提交
85
    embedx_dim = accessor_proto.embedx_dim
86 87 88
    if accessor_proto.accessor_class == "SparseAccessor":
        if embedx_dim != embedding_dim - 1:
            raise ValueError(
89 90
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}"
                .format(embedding_dim - 1, embedx_dim))
91 92 93
    else:
        if embedx_dim != embedding_dim - 3:
            raise ValueError(
94 95
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 3: {}, but got {}"
                .format(embedding_dim - 3, embedx_dim))
Z
ziyoujiyi 已提交
96 97


Z
ziyoujiyi 已提交
98
class Service:
99

Z
ziyoujiyi 已提交
100 101 102 103 104 105 106 107 108 109 110 111
    def __init__(self):
        pass

    def _set(self, service_proto):
        service_proto.server_class = "BrpcPsServer"
        service_proto.client_class = "BrpcPsClient"
        service_proto.service_class = "BrpcPsService"
        service_proto.start_server_port = 0
        service_proto.server_thread_num = 12


class GpuService(Service):
112

Z
ziyoujiyi 已提交
113
    def __init__(self):
114
        super(GpuService, self).__init__()
Z
ziyoujiyi 已提交
115 116 117 118 119 120

    def _set(self, service_proto):
        service_proto.server_class = 'PsLocalServer'
        service_proto.client_class = 'PsLocalClient'


Z
ziyoujiyi 已提交
121
class Accessor:
122

Z
ziyoujiyi 已提交
123 124 125
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
Z
ziyoujiyi 已提交
126 127
        self.feature_dim = 0
        self.embedding_dim = 0
Z
ziyoujiyi 已提交
128

Z
ziyoujiyi 已提交
129
    # TableAccessorParameter accessor
130 131
    def _set(self, accessor_proto, varname, program_id, context,
             common_accessor):
132 133
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
Z
ziyoujiyi 已提交
134 135 136 137 138
        embedding_dim = 0
        for var in main_program.list_vars():
            if var.name == varname:
                embedding_dim = var.shape[1]
                break
Z
ziyoujiyi 已提交
139

Z
ziyoujiyi 已提交
140
        if not accessor_proto.HasField("accessor_class"):
141
            # DownpourSparseValueAccessor
142
            if context['use_ps_gpu']:
143
                accessor_proto.accessor_class = "CtrDymfAccessor"
144 145
            else:
                accessor_proto.accessor_class = "SparseAccessor"
Z
ziyoujiyi 已提交
146
        if not accessor_proto.HasField("fea_dim"):
147 148 149 150
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.fea_dim = embedding_dim + 2
            else:
                accessor_proto.fea_dim = embedding_dim
Z
ziyoujiyi 已提交
151
        if not accessor_proto.HasField("embedx_dim"):
152 153 154 155
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.embedx_dim = embedding_dim - 1
            else:
                accessor_proto.embedx_dim = embedding_dim - 3
Z
ziyoujiyi 已提交
156 157 158
        if not accessor_proto.HasField("embedx_threshold"):
            accessor_proto.embedx_threshold = 0

D
danleifeng 已提交
159 160 161 162 163 164
        graph_sgd_param = accessor_proto.graph_sgd_param
        if not graph_sgd_param.HasField("nodeid_slot"):
            graph_sgd_param.nodeid_slot = 9008
        if not graph_sgd_param.HasField("feature_learning_rate"):
            graph_sgd_param.feature_learning_rate = 0.05

Z
ziyoujiyi 已提交
165
        ctr_accessor_param = accessor_proto.ctr_accessor_param
166 167
        if accessor_proto.embedx_dim == 0:
            ctr_accessor_param.zero_init = False
Z
ziyoujiyi 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        if not ctr_accessor_param.HasField("nonclk_coeff"):
            ctr_accessor_param.nonclk_coeff = 0.1
        if not ctr_accessor_param.HasField("click_coeff"):
            ctr_accessor_param.click_coeff = 1.0
        if not ctr_accessor_param.HasField("base_threshold"):
            ctr_accessor_param.base_threshold = 0
        if not ctr_accessor_param.HasField("delta_threshold"):
            ctr_accessor_param.delta_threshold = 0
        if not ctr_accessor_param.HasField("delta_keep_days"):
            ctr_accessor_param.delta_keep_days = 16
        if not ctr_accessor_param.HasField("show_click_decay_rate"):
            ctr_accessor_param.show_click_decay_rate = 1
        if not ctr_accessor_param.HasField("delete_threshold"):
            ctr_accessor_param.delete_threshold = 0
        if not ctr_accessor_param.HasField("delete_after_unseen_days"):
            ctr_accessor_param.delete_after_unseen_days = 30
        if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
            ctr_accessor_param.ssd_unseenday_threshold = 1

        for sgd_param in [
                accessor_proto.embed_sgd_param, accessor_proto.embedx_sgd_param
        ]:
            if not sgd_param.HasField("name"):
191 192 193 194 195
                if common_accessor.accessor_class == "sgd":
                    sgd_param.name = "SparseNaiveSGDRule"
                if common_accessor.accessor_class == "adam":
                    sgd_param.name = "SparseAdamSGDRule"

Z
ziyoujiyi 已提交
196 197 198 199 200 201 202 203 204
            if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
                if not sgd_param.adagrad.HasField("learning_rate"):
                    sgd_param.adagrad.learning_rate = 0.05
                if not sgd_param.adagrad.HasField("initial_g2sum"):
                    sgd_param.adagrad.initial_g2sum = 3.0
                if not sgd_param.adagrad.HasField("initial_range"):
                    sgd_param.adagrad.initial_range = 0.0001
                if len(sgd_param.adagrad.weight_bounds) == 0:
                    sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
205

Z
ziyoujiyi 已提交
206 207
            if sgd_param.name == "SparseNaiveSGDRule":
                if not sgd_param.naive.HasField("learning_rate"):
208 209 210
                    learning_rate = common_accessor.initializers[-1].split(
                        "&")[1]
                    sgd_param.naive.learning_rate = float(learning_rate)
Z
ziyoujiyi 已提交
211
                if not sgd_param.naive.HasField("initial_range"):
212 213 214
                    initial_range = common_accessor.initializers[0].split(
                        "&")[-1]
                    sgd_param.naive.initial_range = float(initial_range)
Z
ziyoujiyi 已提交
215 216
                if len(sgd_param.naive.weight_bounds) == 0:
                    sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
217

D
danleifeng 已提交
218
            if sgd_param.name == "SparseAdamSGDRule" or sgd_param.name == "SparseSharedAdamSGDRule":
Z
ziyoujiyi 已提交
219
                if not sgd_param.adam.HasField("learning_rate"):
220 221 222
                    learning_rate = common_accessor.initializers[-1].split(
                        "&")[1]
                    sgd_param.adam.learning_rate = float(learning_rate)
Z
ziyoujiyi 已提交
223
                if not sgd_param.adam.HasField("initial_range"):
224 225 226 227 228 229 230 231 232 233
                    initial_range = common_accessor.initializers[0].split(
                        "&")[-1]
                    sgd_param.adam.initial_range = float(initial_range)

                attr_list = [x.split("&") for x in common_accessor.attrs]
                if not sgd_param.adam.HasField(
                        "beta1_decay_rate"
                ) and common_accessor.accessor_class == "adam":
                    sgd_param.adam.beta1_decay_rate = float(attr_list[0][1])
                else:
Z
ziyoujiyi 已提交
234
                    sgd_param.adam.beta1_decay_rate = 0.9
235 236 237 238 239
                if not sgd_param.adam.HasField(
                        "beta2_decay_rate"
                ) and common_accessor.accessor_class == "adam":
                    sgd_param.adam.beta2_decay_rate = float(attr_list[1][1])
                else:
Z
ziyoujiyi 已提交
240
                    sgd_param.adam.beta2_decay_rate = 0.999
241 242 243 244 245
                if not sgd_param.adam.HasField(
                        "ada_epsilon"
                ) and common_accessor.accessor_class == "adam":
                    sgd_param.adam.ada_epsilon = float(attr_list[2][1])
                else:
Z
ziyoujiyi 已提交
246 247 248 249 250 251
                    sgd_param.adam.ada_epsilon = 1e-08
                if len(sgd_param.adam.weight_bounds) == 0:
                    sgd_param.adam.weight_bounds.extend([-10.0, 10.0])


class CommonAccessor(Accessor):
252

Z
ziyoujiyi 已提交
253
    def __init__(self):
Z
ziyoujiyi 已提交
254 255 256
        super(CommonAccessor, self).__init__()
        self.table_name = ''
        self.entry = 'none'
Z
ziyoujiyi 已提交
257 258 259 260
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
Z
ziyoujiyi 已提交
261
        self.sync = False
Z
ziyoujiyi 已提交
262 263 264 265 266 267 268 269 270 271 272 273
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
274 275 276 277 278
        opt_input_map["adam_d2sum"] = [("Param", None), ("D2Sum", None),
                                       ("G2Sum", None), ("Moment", None),
                                       ("MomentDecayRate", 1),
                                       ("AdaDecayRate", 1), ("AdaEpsilon", 1),
                                       ("LearningRate", 1)]
Z
ziyoujiyi 已提交
279 280 281
        opt_input_map["sum"] = [("Param", None)]
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
W
wangguanqun 已提交
282
        opt_input_map["summary"] = [("Param", None), ("SummaryDecayRate", 1)]
Z
ziyoujiyi 已提交
283 284 285 286 287 288 289 290 291

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["naive_adagrad"] = []
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
292
        opt_attr_map["summary"] = [("summary_decay_rate", "f")]
Z
ziyoujiyi 已提交
293 294 295 296 297 298 299 300 301 302 303

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

W
wangguanqun 已提交
304
    def parse_entry(self, varname, program_id, context):
305 306
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
W
wangguanqun 已提交
307
        for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

    def get_shard(self, total_dim, shard_num, pserver_id):
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
337
        # print("get_initializer_attr param name:", value_name)
Z
ziyoujiyi 已提交
338 339 340 341
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
342
                # print("get_initializer_attr op type:", op.type)
Z
ziyoujiyi 已提交
343
                for attr in self.opt_init_map[op.type]:
344
                    # print("get_initializer_attr opt_init_map attr:", attr)
Z
ziyoujiyi 已提交
345
                    init_attr.append(str(op.attr(attr)))
346
                    # print("get_initializer_attr op attr:", str(op.attr(attr)))
Z
ziyoujiyi 已提交
347 348 349 350
                attr_str = l_in.join(init_attr)
                break
        return attr_str

W
wangguanqun 已提交
351 352 353 354 355 356
    def parse_by_optimizer(self, ctx, context):
        grad_name = ctx.origin_varnames()[0]
        is_sparse = ctx.is_sparse()
        size = ctx.sections()[0]
        single_dim = ctx.sections()[1] if ctx.is_sparse() else 1
        adam_d2sum = context["user_defined_strategy"].adam_d2sum
357 358
        # print("parse_by_optimizer table_id:{} is_datanorm:{}".format(
        #     ctx.table_id(), ctx.is_datanorm_table()))
W
wangguanqun 已提交
359

360 361
        main_program, startup_program, idx = get_program_by_id(
            context, ctx.program_id())
Z
ziyoujiyi 已提交
362 363 364
        pserver_id = get_role_id(context['role_maker'])
        pserver_num = len(get_ps_endpoints(context['role_maker']))
        optimizer_ops = get_optimize_ops(main_program)
365 366
        # print("the one ps optimizer_ops:", optimizer_ops)
        # print("the one ps parse_by_optimizer grad_name:", grad_name)
Z
ziyoujiyi 已提交
367 368 369 370
        oop = None

        for op in optimizer_ops:
            if ("Param" in op.input_names) and (
371 372
                    op.input("Param")[0]
                    == context['grad_name_to_param_name'][grad_name]):
Z
ziyoujiyi 已提交
373 374 375 376 377 378 379 380 381 382 383 384
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = get_trainers(context['role_maker'])
W
wangguanqun 已提交
385 386
        self.table_num = size
        self.table_dim = single_dim
Z
ziyoujiyi 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399

        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
        if context['ps_mode'] == DistributedMode.GEO:
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        elif context['use_ps_gpu'] and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
W
wangguanqun 已提交
400 401 402 403 404
        elif ctx.is_datanorm_table():
            param_varnames = self.opt_input_map["summary"]
            attr_varnames = self.opt_attr_map["summary"]
            self.accessor_class = "summary"
        elif adam_d2sum and not is_sparse:
Z
ziyoujiyi 已提交
405 406 407 408
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
        else:
409 410 411
            if oop.type != 'sgd' and oop.type != 'adam':
                raise ValueError(
                    "The dense optimizer in PS is only supported SGD or Adam!")
Z
ziyoujiyi 已提交
412 413 414 415 416 417 418 419 420 421
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            if self.accessor_class == "adam_d2sum":
                #for dims
                if shape is None:
                    if is_sparse:
W
wangguanqun 已提交
422
                        shape = single_dim
Z
ziyoujiyi 已提交
423
                    else:
W
wangguanqun 已提交
424
                        shape = self.get_shard(size, pserver_num, pserver_id)
Z
ziyoujiyi 已提交
425 426 427 428 429 430 431
                dims.append(shape)

                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
432 433
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
434 435
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
436
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
437

438 439
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
440 441 442 443 444 445 446 447 448
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
W
wangguanqun 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462
            elif self.accessor_class == "summary":
                #for dims
                if shape is None:
                    if is_sparse:
                        shape = single_dim
                    else:
                        shape = self.get_shard(size, pserver_num, pserver_id)
                dims.append(shape)

                #for initializers
                if formal_name == "Param":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]

463 464
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
W
wangguanqun 已提交
465
                elif formal_name == "SummaryDecayRate":
466
                    initializer = "fill_constant&0.999999"
W
wangguanqun 已提交
467 468 469
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
Z
ziyoujiyi 已提交
470 471 472 473 474 475 476 477
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
478 479
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
480 481
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
482
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
483 484 485

                    if shape is None:
                        if is_sparse:
W
wangguanqun 已提交
486
                            shape = single_dim
Z
ziyoujiyi 已提交
487
                        else:
W
wangguanqun 已提交
488
                            shape = self.get_shard(size, pserver_num,
Z
ziyoujiyi 已提交
489 490 491
                                                   pserver_id)
                    dims.append(shape)

492 493
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
494 495
                    initializers.append(initializer)

496 497 498 499 500 501 502 503 504
        if self.accessor_class == 'summary':
            datanorm_ops = get_datanorm_ops(main_program)
            for op in datanorm_ops:
                if ("BatchSize" in op.input_names) and (
                        op.input("BatchSize")[0]
                        == context['grad_name_to_param_name'][grad_name]):
                    oop = op
                    break

Z
ziyoujiyi 已提交
505 506
        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
507
            attrs.append("&".join([attr_varname, str(value)]))
Z
ziyoujiyi 已提交
508 509 510 511 512 513

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

Z
ziyoujiyi 已提交
514 515 516 517 518 519 520 521 522 523 524 525
    # CommonAccessorParameter common
    def _set(self, proto):
        proto.name = self.accessor_class
        proto.table_name = self.table_name
        proto.params.extend(self.params)
        proto.dims.extend(self.dims)
        proto.initializers.extend(self.initializers)
        proto.entry = self.entry
        proto.trainer_num = self.trainer_num
        proto.sync = self.sync
        proto.table_num = self.table_num
        proto.table_dim = self.table_dim
526
        proto.attr = "#".join(self.attrs)
Z
ziyoujiyi 已提交
527 528 529


class Tensor:
530

Z
ziyoujiyi 已提交
531 532 533 534
    def __init__(self, tesnor_dcit):
        self.tensor_dict = tesnor_dcit

    def _set(self, tensor_proto):
535 536
        tensor_proto.main_program_id = self.tensor_dict.get(
            "main_program_id", 0)
Z
ziyoujiyi 已提交
537 538 539 540 541 542
        tensor_proto.startup_program_id = self.tensor_dict.get(
            "startup_program_id", 0)
        tensor_proto.feed_var_name = self.tensor_dict.get("feed_var_name", '')
        tensor_proto.fetch_var_name = self.tensor_dict.get("fetch_var_name", '')
        tensor_proto.tensor_table_class = self.tensor_dict.get(
            "tensor_table_class", '')
Z
ziyoujiyi 已提交
543 544 545


class Table:
546

Z
ziyoujiyi 已提交
547 548 549 550
    def __init__(self):
        self.table_class = None
        self.shard_num = -1
        self.type = None
Z
ziyoujiyi 已提交
551 552 553
        self.accessor = Accessor()
        self.shard_num = 256
        self.common = CommonAccessor()
Z
ziyoujiyi 已提交
554 555
        self.tensor = None

Z
ziyoujiyi 已提交
556 557
    def _set(self, table_proto):
        pass
Z
ziyoujiyi 已提交
558 559


Z
ziyoujiyi 已提交
560
class BarrierTable(Table):
561

Z
ziyoujiyi 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    def __init__(self, context, idx):
        super(BarrierTable, self).__init__()
        self.type = None
        self.shard_num = 256
        self.accessor.accessor_class = 'CommMergeAccessor'
        self.common.attrs = ""
        self.common.dims = []
        self.common.params = []
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.role_maker = context['role_maker']
        self.idx = idx
        self.is_sync = context['is_sync']

    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.table_class = 'BarrierTable'
        table_proto.shard_num = 256
Z
ziyoujiyi 已提交
579
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593

        table_proto.accessor.accessor_class = "CommMergeAccessor"
        table_proto.accessor.fea_dim = 0
        table_proto.accessor.embedx_dim = 0

        table_proto.common.name = ""
        table_proto.common.table_name = "barrier_table"
        table_proto.common.sync = self.is_sync
        table_proto.common.entry = 'none'

        trainer_num = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainer_num += len(self.role_maker._get_heter_worker_endpoints())
        table_proto.common.trainer_num = trainer_num
Z
ziyoujiyi 已提交
594 595


Z
ziyoujiyi 已提交
596
class TensorTable(Table):
597

Z
ziyoujiyi 已提交
598 599 600 601 602
    def __init__(self, idx, tensor_dict, role_maker):
        super(TensorTable, self).__init__()
        self.idx = idx
        self.tensor_dict = tensor_dict
        self.role_maker = role_maker
Z
ziyoujiyi 已提交
603

Z
ziyoujiyi 已提交
604 605
    def _set(self, table_proto):
        table_proto.table_id = self.idx
Z
ziyoujiyi 已提交
606
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
607
        table_proto.table_class = self.tensor_dict.get("tensor_table_class", '')
Z
ziyoujiyi 已提交
608

Z
ziyoujiyi 已提交
609
        table_proto.accessor.accessor_class = "CommMergeAccessor"
Z
ziyoujiyi 已提交
610

611 612
        table_proto.common.table_name = self.tensor_dict.get(
            "feed_var_name", '')
Z
ziyoujiyi 已提交
613
        table_proto.common.trainer_num = get_trainers(self.role_maker)
Z
ziyoujiyi 已提交
614

Z
ziyoujiyi 已提交
615 616
        tensor = Tensor(self.tensor_dict)
        tensor._set(table_proto.tensor)
Z
ziyoujiyi 已提交
617 618


Z
ziyoujiyi 已提交
619
class SparseTable(Table):
620

Z
ziyoujiyi 已提交
621 622 623 624 625 626 627
    def __init__(self, context, send_ctx):
        super(SparseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.type = None
        self.table_class = 'MemorySparseTable'
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
628

Z
ziyoujiyi 已提交
629 630
    def _set(self, table_proto):
        ctx = self.ctx
631 632
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
633 634 635
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
636
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
637
        table_proto.shard_num = self.shard_num
638 639 640 641
        if table_proto.sparse_table_cache_file_num > len(
                get_ps_endpoints(self.context['role_maker'])):
            table_proto.sparse_table_cache_file_num = len(
                get_ps_endpoints(self.context['role_maker']))
Z
ziyoujiyi 已提交
642 643 644 645

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]

646 647 648 649 650 651 652
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)

Z
ziyoujiyi 已提交
653 654 655 656 657 658 659 660
        print('new table_name: {}'.format(self.common.table_name))
        all_table_proto = self.context[
            "user_defined_strategy"].sparse_table_configs
        usr_table_proto = all_table_proto.add()
        for proto in all_table_proto:
            if proto.table_name == self.common.table_name:
                usr_table_proto = proto
                break
661 662 663 664 665
        if usr_table_proto.HasField("table_class"):
            table_proto.table_class = usr_table_proto.table_class
        else:
            table_proto.table_class = 'MemorySparseTable'
            warnings.warn("The PS mode must use MemorySparseTable.")
Z
ziyoujiyi 已提交
666 667 668
        if usr_table_proto.HasField("shard_num"):
            table_proto.shard_num = usr_table_proto.shard_num
        else:
669 670 671 672 673 674 675 676 677 678
            if self.context['use_ps_gpu']:
                table_proto.shard_num = 37
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 37 in gpups."
                )
            else:
                table_proto.shard_num = 1000
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 1000 in cpups."
                )
Z
ziyoujiyi 已提交
679

680 681 682 683 684 685 686 687 688 689 690
        if usr_table_proto.HasField("enable_sparse_table_cache"):
            table_proto.enable_sparse_table_cache = usr_table_proto.enable_sparse_table_cache
        if usr_table_proto.HasField("sparse_table_cache_rate"):
            table_proto.sparse_table_cache_rate = usr_table_proto.sparse_table_cache_rate
        if usr_table_proto.HasField("sparse_table_cache_file_num"):
            table_proto.sparse_table_cache_file_num = usr_table_proto.sparse_table_cache_file_num
        if usr_table_proto.HasField("enable_revert"):
            table_proto.enable_revert = usr_table_proto.enable_revert
        if usr_table_proto.HasField("shard_merge_rate"):
            table_proto.shard_merge_rate = usr_table_proto.shard_merge_rate

Z
ziyoujiyi 已提交
691 692 693
        if usr_table_proto.accessor.ByteSize() == 0:
            warnings.warn(
                "The accessor of sparse table is not set, use default value.")
Z
ziyoujiyi 已提交
694

Z
ziyoujiyi 已提交
695 696 697
        table_proto.accessor.ParseFromString(
            usr_table_proto.accessor.SerializeToString())
        self.accessor._set(table_proto.accessor, self.common.table_name,
698
                           ctx.program_id(), self.context, self.common)
Z
ziyoujiyi 已提交
699

Z
ziyoujiyi 已提交
700 701
        check_embedding_dim(table_proto.accessor, self.common.table_name,
                            ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
702 703


Z
ziyoujiyi 已提交
704
class GeoSparseTable(SparseTable):
705

Z
ziyoujiyi 已提交
706 707
    def __init__(self, context, send_ctx):
        super(GeoSparseTable, self).__init__(context, send_ctx)
708
        self.table_class = "MemorySparseGeoTable"
Z
ziyoujiyi 已提交
709 710 711 712 713
        if self.context['ps_mode'] != DistributedMode.GEO:
            raise ValueError("not geo sparse table!")

    def _set(self, table_proto):
        ctx = self.ctx
714 715
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
716 717 718
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
719
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
720 721 722 723 724 725 726 727 728
        table_proto.shard_num = self.shard_num

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = ctx.sections()[1]

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]
        self.common.parse_by_optimizer(ctx, self.context)
729 730
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
731 732 733 734 735
        self.common.sync = False
        self.common._set(table_proto.common)


class DenseTable(Table):
736

Z
ziyoujiyi 已提交
737 738 739 740 741
    def __init__(self, context, send_ctx):
        super(DenseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
742

Z
ziyoujiyi 已提交
743 744
    def _set(self, table_proto):
        ctx = self.ctx
745 746
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == True):
Z
ziyoujiyi 已提交
747 748 749 750
            return

        table_proto.table_id = ctx.table_id()

Z
ziyoujiyi 已提交
751
        table_proto.type = the_one_ps_pb2.PS_DENSE_TABLE
752
        table_proto.table_class = "MemoryDenseTable"
Z
ziyoujiyi 已提交
753 754 755 756 757 758 759 760
        table_proto.shard_num = 256

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = 1

        self.common.table_name = "MergedDense"
        self.common.parse_by_optimizer(ctx, self.context)
761 762
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
763 764 765 766 767 768
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)


class Server:
769

Z
ziyoujiyi 已提交
770
    def __init__(self):
Z
ziyoujiyi 已提交
771
        pass
Z
ziyoujiyi 已提交
772

Z
ziyoujiyi 已提交
773 774
    def _set(self):
        pass
Z
ziyoujiyi 已提交
775 776


Z
ziyoujiyi 已提交
777
class DownpourServer(Server):
778

Z
ziyoujiyi 已提交
779 780 781 782 783
    def __init__(self):
        super(DownpourServer, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
784 785 786


class Worker:
787

Z
ziyoujiyi 已提交
788
    def __init__(self):
Z
ziyoujiyi 已提交
789
        pass
Z
ziyoujiyi 已提交
790

Z
ziyoujiyi 已提交
791 792
    def _set(self):
        pass
Z
ziyoujiyi 已提交
793 794


Z
ziyoujiyi 已提交
795
class DownpourWorker(Worker):
796

Z
ziyoujiyi 已提交
797 798 799 800 801
    def __init__(self):
        super(DownpourWorker, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
802 803 804


class fsClient:
805

Z
ziyoujiyi 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818
    def __init__(self, fs_client_param):
        self.fs_client_param = fs_client_param

    def _set(self, proto):
        if not text_format.MessageToString(self.fs_client_param):
            return
        proto.uri = self.fs_client_param.uri
        proto.user = self.fs_client_param.user
        proto.passwd = self.fs_client_param.passwd
        proto.hadoop_bin = self.fs_client_param.hadoop_bin


class PsDescBuilder(object):
819

Z
ziyoujiyi 已提交
820 821 822 823 824 825
    def __init__(self, context):
        self.context = context
        self.is_sync = context['is_sync']
        self.ps_mode = context['ps_mode']
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.use_ps_gpu = context['use_ps_gpu']
826
        self.barrier_table_id = None
827

Z
ziyoujiyi 已提交
828
        self.send_ctx = get_the_one_send_context(
829
            self.context, split_dense_table=self.is_heter_ps_mode)
Z
ziyoujiyi 已提交
830 831 832 833 834 835 836 837 838

        self.tensor_table_dict = {}  # TODO
        self._server_sub_program = []

        self.tables = self._get_tables()

        self.service = self._get_service()
        self.fs_client = self._get_fs_client()

Z
ziyoujiyi 已提交
839
        self.ps_desc = the_one_ps_pb2.PSParameter()
840
        self.fl_desc = the_one_ps_pb2.FLParameter()
Z
ziyoujiyi 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

    def _get_tensor_tables(self):
        program_idx = 0
        if not self.tensor_table_dict:
            self._server_sub_program.append(Program().desc)
        tables = []
        for table_name in self.tensor_table_dict:
            tables.append(globals()['TensorTable'](len(tables), tensor_dict,
                                                   self.context['role_maker']))
            program_idx += 1
        return tables

    def _get_tables(self):
        tables = []
        for idx, (name, ctx) in enumerate(self.send_ctx.items()):
856
            print("idx, name, ctx:", idx, name, ctx)
Z
ziyoujiyi 已提交
857 858
            if ctx.is_sparse():
                if self.ps_mode == DistributedMode.GEO:
859 860 861 862 863
                    if (self.context['local_sparse']
                            and name[:-5] in self.context['local_sparse']) or (
                                not self.context['local_sparse']):
                        tables.append(globals()['GeoSparseTable'](self.context,
                                                                  ctx))
Z
ziyoujiyi 已提交
864 865 866
                    else:
                        tables.append(globals()['SparseTable'](self.context,
                                                               ctx))
Z
ziyoujiyi 已提交
867 868 869 870 871 872 873 874 875 876 877 878
                else:
                    tables.append(globals()['SparseTable'](self.context, ctx))
            else:
                tables.append(globals()['DenseTable'](self.context, ctx))
        self.tensor_tables = self._get_tensor_tables()
        tables.extend(self.tensor_tables)
        tables.append(globals()['BarrierTable'](self.context, len(tables)))
        return tables

    def _get_service(self):
        if self.use_ps_gpu:
            return GpuService()
Z
ziyoujiyi 已提交
879
        else:
Z
ziyoujiyi 已提交
880 881 882 883 884
            return Service()

    def _get_fs_client(self):
        return fsClient(self.context["user_defined_strategy"].fs_client_param)

885 886 887
    def build_fl_client_desc(self, client_info):
        pass

Z
ziyoujiyi 已提交
888 889 890 891 892 893 894 895
    def build_worker_desc(self):
        for table in self.tables:
            table_proto = self.ps_desc.worker_param.downpour_worker_param.downpour_table_param.add(
            )
            table._set(table_proto)
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
896 897
            if type(table) == BarrierTable and self.barrier_table_id is None:
                self.barrier_table_id = table.idx
Z
ziyoujiyi 已提交
898 899
        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
900
        self.fs_client._set(self.ps_desc.fs_client_param)
Z
ziyoujiyi 已提交
901 902 903
        return text_format.MessageToString(self.ps_desc)

    def build_server_desc(self):
904
        self.sparse_table_maps = {}
Z
ziyoujiyi 已提交
905 906 907 908
        for table in self.tables:
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
Z
ziyoujiyi 已提交
909
            if table_proto.type == the_one_ps_pb2.PS_SPARSE_TABLE and table_proto.common is not None:
Z
ziyoujiyi 已提交
910 911 912 913 914 915 916
                self.sparse_table_maps[
                    table_proto.common.table_name] = table_proto.table_id

        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        self.fs_client._set(self.ps_desc.fs_client_param)
        return text_format.MessageToString(self.ps_desc)
Z
ziyoujiyi 已提交
917 918 919


class TheOnePSRuntime(RuntimeBase):
920

Z
ziyoujiyi 已提交
921 922 923 924 925
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
926
        self._coordinator = None
Z
ziyoujiyi 已提交
927 928
        self._server_sub_program = []
        self._heter_client = None
929
        self._send_ctx = None
Z
ziyoujiyi 已提交
930 931 932 933

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
934 935
        self.role_id = get_role_id(self.role_maker)
        self.debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
W
wangguanqun 已提交
936

Z
ziyoujiyi 已提交
937
        self.origin_main_program = context["origin_main_program"]
Z
ziyoujiyi 已提交
938 939 940 941 942
        self.origin_main_programs = context.get("origin_main_programs",
                                                [self.origin_main_program])
        self.context["origin_main_programs"] = self.origin_main_programs
        self.context["origin_startup_programs"] = context.get(
            'origin_startup_programs', [context['origin_startup_program']])
Z
ziyoujiyi 已提交
943 944 945
        self.context[
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
        self.is_heter_ps_mode = self.context['is_heter_ps_mode']
946 947
        self.context['trainer'] = TrainerRuntimeConfig(
            context['valid_strategy'])
Z
ziyoujiyi 已提交
948
        self.context['ps_mode'] = self.context['trainer'].mode
W
wangguanqun 已提交
949 950
        self.context['use_ps_gpu'] = context['valid_strategy'].a_sync_configs[
            'use_ps_gpu']
Z
ziyoujiyi 已提交
951
        self.context['is_sync'] = True if self.context[
Z
ziyoujiyi 已提交
952 953
            'ps_mode'] == DistributedMode.SYNC else False
        self.context['grad_name_to_param_name'] = {}
W
wangguanqun 已提交
954
        self.context['tensor_table'] = {}
955 956 957 958 959 960 961 962
        # FL
        self.context['local_sparse'] = context[
            "user_defined_strategy"].trainer_desc_configs["local_sparse"]
        self.context['remote_sparse'] = context[
            "user_defined_strategy"].trainer_desc_configs["remote_sparse"]
        print("fl-ps > local_sparse: {}, remote_sparse: {}".format(
            self.context['local_sparse'], self.context['remote_sparse']))

W
wangguanqun 已提交
963
        build_var_distributed(self.context)
Z
ziyoujiyi 已提交
964

965 966
        self.trainer_endpoints = get_trainer_endpoints(self.role_maker)

967
        self.endpoints = get_ps_endpoints(self.role_maker)
Z
ziyoujiyi 已提交
968
        self.string_hosts = []
969
        for idx, ep in enumerate(self.endpoints):
Z
ziyoujiyi 已提交
970 971 972 973
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            self.string_hosts.append(pshost.serialize_to_string())

974 975 976 977 978 979 980 981 982 983
        self.with_coordinator = self.role_maker._with_coordinator
        self.coordinator_hosts = []
        if self.with_coordinator:
            print("fl-ps > all ps addrs: {}".format(self.string_hosts))
            coordinator_endpoints = self.role_maker._get_coordinator_endpoints()
            for idx, ep in enumerate(coordinator_endpoints):
                ip, port = ep.split(":")
                pshost = fluid.core.PSHost(ip, int(port), idx)
                self.coordinator_hosts.append(pshost.serialize_to_string())

Z
ziyoujiyi 已提交
984 985
        self.ps_desc_builder = PsDescBuilder(self.context)

986
    def _init_all_params(self, scopes, send_ctx, recv_map):
987
        all_var_names = []
988 989 990 991 992 993 994
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
995
            #print("init params:", idx, table_id, var_names)
996
            self._worker.push_dense_params(scope, table_id, var_names)
997 998
            all_var_names.extend(var_names)
        return all_var_names
999 1000

    def _pull_all_dense(self, scopes, send_ctx, recv_map):
1001
        all_var_names = []
1002 1003 1004 1005 1006 1007 1008
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
1009
            #print("pull all dense:", idx, table_id, var_names)
1010
            self._worker.pull_dense_params(scope, table_id, var_names)
1011 1012
            all_var_names.extend(var_names)
        return all_var_names
1013

1014
    def _init_params(self, program, scope, send_ctx, recv_map):
1015
        all_var_names = []
1016 1017 1018 1019 1020 1021 1022 1023 1024
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("init params:", table_id, var_names)
            self._worker.push_dense_params(scope, table_id, var_names)
1025 1026
            all_var_names.extend(var_names)
        return all_var_names
1027

1028
    def _pull_dense(self, program, scope, send_ctx, recv_map):
1029
        all_var_names = []
1030 1031 1032 1033 1034 1035 1036 1037 1038
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull dense:", table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)
1039 1040
            all_var_names.extend(var_names)
        return all_var_names
1041 1042

    def _init_worker(self, scopes=None):
Z
ziyoujiyi 已提交
1043
        worker_desc = self.ps_desc_builder.build_worker_desc()
Z
ziyoujiyi 已提交
1044 1045 1046 1047 1048 1049
        if self.context['use_ps_gpu']:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
1050 1051 1052 1053
            gpus_env = [int(s) for s in gpus_env.split(",")]
            main_program._fleet_opt["worker_places"] = gpus_env
            PSGPU = fluid.core.PSGPU()
            PSGPU.init_gpu_ps(gpus_env)
Z
ziyoujiyi 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1067
            ep_list=self.endpoints)
1068
        self._send_ctx = send_ctx
Z
ziyoujiyi 已提交
1069 1070
        trainer_config = self.context['trainer']

1071 1072
        if self.debug:
            print("worker_desc: \n{}".format(worker_desc))
Z
ziyoujiyi 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()

1084
        kwargs["barrier_table_id"] = self.ps_desc_builder.barrier_table_id
Z
ziyoujiyi 已提交
1085 1086 1087 1088 1089

        if self.context['ps_mode'] == DistributedMode.SYNC:
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

W
wangguanqun 已提交
1090
        print("communicator config:", trainer_config.get_communicator_flags())
Z
ziyoujiyi 已提交
1091

1092
        self._worker.init_worker(worker_desc, self.string_hosts, self.role_id)
Z
ziyoujiyi 已提交
1093 1094 1095
        if not self.is_heter_ps_mode:
            self.trainer_endpoint = get_trainer_endpoint(self.role_maker)
            print("fl-ps > trainer_endpoint: {}".format(self.trainer_endpoint))
1096 1097 1098 1099 1100
        print("fl-ps > with_coordinator? {}".format(self.with_coordinator))
        print("fl-ps > coordinator addr: {}".format(self.coordinator_hosts))
        if self.with_coordinator:
            self._worker.init_fl_worker(self.coordinator_hosts, self.role_id,
                                        self.trainer_endpoint)
1101

1102 1103
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode:
1104 1105 1106
            self._communicator = Communicator(
                trainer_config.mode, kwargs,
                trainer_config.get_communicator_flags())
1107
            self._communicator.init_with_ctx(send_ctx, dense_map, worker_desc,
1108 1109
                                             self.string_hosts,
                                             fluid.global_scope())
Z
ziyoujiyi 已提交
1110
        fleet.util.barrier()
1111 1112 1113

        # info = self._communicator.get_client_info()
        info = self._worker.get_client_info()
Z
ziyoujiyi 已提交
1114
        if isinstance(info, list) and len(info) > 0:
1115 1116
            all_info = self.role_maker._all_gather(
                info[0])  # 收集其他 client 的 service 地址
Z
ziyoujiyi 已提交
1117 1118 1119 1120
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
1121 1122 1123 1124 1125

            # self._communicator.set_clients(all_info)
            # self._communicator.create_client_to_client_connection()
            self._worker.set_clients(all_info)
            self._worker.create_client2client_connection()
Z
ziyoujiyi 已提交
1126 1127 1128 1129 1130 1131 1132 1133
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        if scopes is None:
            if len(self.origin_main_programs) > 1:
                raise ValueError(
                    "You must set the scope list when you have Multiple programs"
                )
            scopes = [fluid.global_scope()]
        if len(self.origin_main_programs) != len(scopes):
            raise VauleError("len(programs) != len(scopes)")

        self.scopes = scopes
Z
ziyoujiyi 已提交
1144
        if not is_test:
1145 1146
            if self.context[
                    'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1147
                self._communicator.init_params(dense_map)
1148
            else:
D
danleifeng 已提交
1149
                if not self.context['use_ps_gpu']:
1150
                    if self.role_id == 0:
1151
                        print("entering self._init_all_params()")
D
danleifeng 已提交
1152
                        self._init_all_params(scopes, send_ctx, dense_map)
1153

1154 1155
            fleet.util.barrier()  # 保证 0 号 worker 参数 push_dense_param over

D
danleifeng 已提交
1156
        if not self.context['use_ps_gpu']:
Z
ziyoujiyi 已提交
1157
            self._pull_all_dense(scopes, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1158 1159
        fleet.util.barrier()

1160 1161
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1162 1163 1164 1165
            if not self._communicator.is_running():
                self._communicator.start()
            else:
                warnings.warn("communicator has been initialized, skip")
Z
ziyoujiyi 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            wait_server_ready(self.role_maker._get_pserver_endpoints())
            if self.is_heter_ps_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.is_heter_ps_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
1181 1182 1183
                self._heter_client = HeterClient(
                    next_trainers, previous_trainers,
                    self.role_maker._role_id())  # --> HeterClient::GetInstance
Z
ziyoujiyi 已提交
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    def _init_coordinator(self, scopes=None):
        if self._coordinator == None:
            self._coordinator = Coordinator(self.string_hosts)

        print(">>> curr node ip: {}".format(self.coordinator_hosts[0]))
        print(">>> all trainer endpoints: {}".format(self.trainer_endpoints))
        self._coordinator.start_coordinator(self.coordinator_hosts[0],
                                            self.trainer_endpoints)

    def _make_fl_strategy(self):
        if self._coordinator == None:
            assert ("Coordinator py object is null!")
        else:
            self._coordinator.make_fl_strategy()

Z
ziyoujiyi 已提交
1200
    def _init_server(self, dirname=None, var_names=None, **kwargs):
Z
ziyoujiyi 已提交
1201
        server_desc = self.ps_desc_builder.build_server_desc()
Z
ziyoujiyi 已提交
1202 1203 1204 1205
        trainers = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())

1206 1207
        if self.debug:
            print("server_desc: \n{}".format(server_desc))
W
wangguanqun 已提交
1208

Z
ziyoujiyi 已提交
1209
        self._server = fluid.core.DistFleetWrapper()
1210
        self._server.init_server(server_desc, self.string_hosts, self.role_id,
Z
ziyoujiyi 已提交
1211
                                 trainers, self._server_sub_program)
Z
ziyoujiyi 已提交
1212

W
wangguanqun 已提交
1213 1214 1215
        dist_varnames = get_sparse_tablenames(self.origin_main_programs, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                False)
Z
ziyoujiyi 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
1225 1226
                        "fleet.init server can only load sparse variables in {}"
                        .format(distributed_varnames))
Z
ziyoujiyi 已提交
1227 1228 1229 1230 1231
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

Z
ziyoujiyi 已提交
1232
        sparse_table_maps = self.ps_desc_builder.sparse_table_maps
Z
ziyoujiyi 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
            self._server.load_sparse(dirname, "0", table_id)

    def _run_server(self):
        ep = get_ps_endpoint(self.role_maker)
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
1247 1248 1249
        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator.stop()
        self._worker.stop_worker()
Z
ziyoujiyi 已提交
1250 1251 1252 1253 1254 1255
        if self.is_heter_ps_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
            self._heter_client.stop()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
1256

Z
ziyoujiyi 已提交
1257 1258 1259 1260
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

W
wangguanqun 已提交
1261
            from .utils.public import _get_varname_parts
Z
ziyoujiyi 已提交
1262 1263 1264 1265
            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

1266
            if origin_varname.startswith("learning_rate_"):
Z
ziyoujiyi 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

W
wangguanqun 已提交
1277 1278 1279 1280 1281 1282 1283
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
    def _ps_save_dense_params(self,
                              executor,
                              dirname,
                              scope,
                              program,
                              var_names=None):
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            ep_list=self.endpoints)
        if program is None or len(self.origin_main_programs) == 1:
            program = self.origin_main_programs[0]
        dense_var_names = self._pull_dense(program, scope, send_ctx, dense_map)
        save_var_names = dense_var_names if var_names is None else var_names
        vars = [program.global_block().var(i) for i in save_var_names]
        import paddle
        with paddle.static.scope_guard(scope):
            paddle.static.save_vars(executor,
                                    "./",
                                    program,
                                    vars=vars,
                                    filename=dirname)

Z
ziyoujiyi 已提交
1309 1310
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
W
wangguanqun 已提交
1311 1312
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                     True)
Z
ziyoujiyi 已提交
1313
        values = []
W
wangguanqun 已提交
1314
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1315 1316 1317 1318
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # only save sparse param to local
                try:
W
wangguanqun 已提交
1319
                    self._worker.recv_and_save_model(id, model_path)
Z
ziyoujiyi 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
                except:
                    pass
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
            values.extend(names)
        # self._worker.save_all_model(dirname, mode)
        return values

    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
1331 1332 1333
                                       main_program=None,
                                       mode=0,
                                       **kwargs):
Z
ziyoujiyi 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        if main_program is None:
1355
            main_program = self.context['origin_main_program']
Z
ziyoujiyi 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        self._worker.save_all_model(dirname, mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True,
                                           mode=0):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        import paddle
1387 1388 1389 1390 1391
        program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(program))
        scope = self.scopes[idx]
        print("save inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

W
wangguanqun 已提交
1407
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1408 1409 1410 1411 1412 1413 1414
        model_basename = "__model__"
        model_basename = os.path.join(model_path, model_basename)
        paddle.save(infer_program, model_basename)

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
1415
            split_dense_table=self.is_heter_ps_mode)
Z
ziyoujiyi 已提交
1416 1417 1418
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)

1419 1420 1421
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
Z
ziyoujiyi 已提交
1422 1423
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1424 1425
            ep_list=self.endpoints)
        self._pull_dense(program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1426 1427 1428 1429 1430

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
1431 1432
            filter(TheOnePSRuntime.__exclude_vars(sparse_names),
                   infer_program.list_vars()))
Z
ziyoujiyi 已提交
1433 1434

        for var in remaining_vars:
1435
            tensor = var.get_value(scope)
1436 1437 1438
            paddle.save(tensor,
                        os.path.join(model_path, var.name),
                        use_binary_format=True)
Z
ziyoujiyi 已提交
1439

Z
zhaocaibei123 已提交
1440
    def _save_cache_model(self, dirname, **kwargs):
1441
        mode = kwargs.get("mode", 1)
Z
zhaocaibei123 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        table_id = kwargs.get("table_id", 0)
        self._worker.client_flush()
        fleet.util.barrier()
        cache_threshold = 0.0

        if self.role_maker._is_first_worker():
            cache_threshold = self._worker.get_cache_threshold(table_id)
        #check cache threshold right or not
        fleet.util.barrier()

        if self.role_maker._is_first_worker():
            self._worker.cache_shuffle(table_id, dirname, mode, cache_threshold)

        fleet.util.barrier()

        feasign_num = -1
        if self.role_maker._is_first_worker():
            feasign_num = self._worker.save_cache(table_id, dirname, mode)

        fleet.util.barrier()
        return feasign_num

1464 1465 1466 1467 1468 1469
    def _check_save_pre_patch_done(self):
        fleet.util.barrier()
        if self.role_maker._is_first_worker():
            self._worker.check_save_pre_patch_done()
        fleet.util.barrier()

Z
ziyoujiyi 已提交
1470
    def _load_sparse_params(self, dirname, context, main_program, mode):
W
wangguanqun 已提交
1471
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
Z
ziyoujiyi 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
                                                     True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
1487 1488 1489 1490 1491
        main_program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(main_program))
        scope = self.scopes[idx]
        print("load inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
1501
            split_dense_table=self.is_heter_ps_mode)
Z
ziyoujiyi 已提交
1502 1503 1504 1505

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

1506 1507 1508 1509 1510 1511 1512
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            ep_list=self.endpoints)

Z
ziyoujiyi 已提交
1513
        recv_dense_varnames = []
1514
        for _, names in dense_map.items():
Z
ziyoujiyi 已提交
1515 1516 1517 1518 1519
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
1520 1521
            filter(TheOnePSRuntime.__exclude_vars(loaded_varnames),
                   main_program.list_vars()))
Z
ziyoujiyi 已提交
1522

1523
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1524 1525 1526 1527 1528
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(model_path, var.name))
1529
            var.set_value(tensor, scope)
Z
ziyoujiyi 已提交
1530

1531
        self._init_params(main_program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1532

1533
    def _save_one_table(self, table_id, path, mode):
1534
        fleet.util.barrier()
1535 1536 1537
        if self.role_maker._is_first_worker():
            self._worker.save_one_model(table_id, path, mode)
        fleet.util.barrier()
Z
ziyoujiyi 已提交
1538

1539
    def _save_dense_params(self, *args, **kwargs):
1540
        fleet.util.barrier()
1541 1542 1543 1544 1545
        if self.role_maker._is_first_worker():
            self._ps_save_dense_params(*args, **kwargs)
        fleet.util.barrier()

    def _save_persistables(self, *args, **kwargs):
1546
        fleet.util.barrier()
1547 1548 1549 1550 1551
        if self.role_maker._is_first_worker():
            self._save_distributed_persistables(*args, **kwargs)
        fleet.util.barrier()

    def _save_inference_model(self, *args, **kwargs):
1552
        fleet.util.barrier()
1553 1554 1555 1556 1557
        if self.role_maker._is_first_worker():
            self._ps_inference_save_inference_model(*args, **kwargs)
        fleet.util.barrier()

    def _load_one_table(self, table_id, path, mode):
1558
        fleet.util.barrier()
1559 1560 1561 1562 1563
        if self.role_maker._is_first_worker():
            self._worker.load_one_table(table_id, path, mode)
        fleet.util.barrier()

    def _load_persistables(self, path, mode):
1564
        fleet.util.barrier()
1565 1566 1567 1568 1569
        if self.role_maker._is_first_worker():
            self._worker.load_model(path, mode)
        fleet.util.barrier()

    def _load_inference_model(self, path, mode):
1570
        fleet.util.barrier()
1571
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1572
            self._ps_inference_load_inference_model(path, mode)
1573
        fleet.util.barrier()
Z
ziyoujiyi 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0

        fleet.util.barrier()
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1585
            sparses = get_the_one_recv_context(
Z
ziyoujiyi 已提交
1586 1587 1588
                self.context,
                is_dense=False,
                split_dense_table=self.role_maker.
1589
                _is_heter_parameter_server_mode)
Z
ziyoujiyi 已提交
1590 1591 1592 1593

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()