elementwise_max_op.h 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
wip  
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

L
LJQ❤️ 已提交
17
#include <cmath>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
F
wip  
fengjiayi 已提交
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ElementwiseMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
27 28 29
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
30 31 32

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
33 34
    ElementwiseComputeEx<MaxFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MaxFunctor<T>(), z);
F
wip  
fengjiayi 已提交
35 36 37
  }
};

L
LJQ❤️ 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
template <typename DeviceContext, typename T>
class ElementwiseFMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
    ElementwiseComputeEx<FMaxFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                           FMaxFunctor<T>(), z);
  }
};

F
wip  
fengjiayi 已提交
53
template <typename T>
C
chengduoZH 已提交
54 55
struct MaxGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
G
Guoxia Wang 已提交
56
    return dout * static_cast<T>(x > y);
F
wip  
fengjiayi 已提交
57 58 59 60
  }
};

template <typename T>
C
chengduoZH 已提交
61 62
struct MaxGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
G
Guoxia Wang 已提交
63
    return dout * static_cast<T>(x <= y);
F
wip  
fengjiayi 已提交
64 65 66
  }
};

F
fengjiayi 已提交
67
template <typename DeviceContext, typename T>
68
class ElementwiseMaxGradKernel : public ElemwiseGradKernel<T> {
F
fengjiayi 已提交
69 70
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
71
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
72 73 74 75 76 77 78
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
79
    auto* out = dout;  // Fake out, not used
C
chengduoZH 已提交
80
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
81 82
    ElemwiseGradCompute<DeviceContext, T, MaxGradDx<T>, MaxGradDy<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MaxGradDx<T>(), MaxGradDy<T>());
F
fengjiayi 已提交
83 84
  }
};
L
LJQ❤️ 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

template <typename T>
struct FMaxGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>((x >= y) || isnan(y));
  }
};

template <>
struct FMaxGradDx<paddle::platform::float16> {
  HOSTDEVICE paddle::platform::float16 operator()(
      paddle::platform::float16 x, paddle::platform::float16 y,
      paddle::platform::float16 out, paddle::platform::float16 dout) const {
    return dout * static_cast<paddle::platform::float16>(
                      (x >= y) || paddle::platform::isnan(y));
  }
};

template <>
struct FMaxGradDx<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>((x >= y));
  }
};

template <>
struct FMaxGradDx<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x, int64_t y, int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>((x >= y));
  }
};

template <typename T>
struct FMaxGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(!((x >= y) || isnan(y)));
  }
};

template <>
struct FMaxGradDy<paddle::platform::float16> {
  HOSTDEVICE paddle::platform::float16 operator()(
      paddle::platform::float16 x, paddle::platform::float16 y,
      paddle::platform::float16 out, paddle::platform::float16 dout) const {
    return dout * static_cast<paddle::platform::float16>(
                      !((x >= y) || paddle::platform::isnan(y)));
  }
};

template <>
struct FMaxGradDy<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x, int64_t y, int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>(!((x >= y)));
  }
};

template <>
struct FMaxGradDy<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>(!((x >= y)));
  }
};

template <typename DeviceContext, typename T>
class ElementwiseFMaxGradKernel : public ElemwiseGradKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElemwiseGradKernel<T>::Compute(ctx);
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* out = dout;  // Fake out, not used
    int axis = ctx.Attr<int>("axis");
    ElemwiseGradCompute<DeviceContext, T, FMaxGradDx<T>, FMaxGradDy<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, FMaxGradDx<T>(),
        FMaxGradDy<T>());
  }
};
F
wip  
fengjiayi 已提交
169 170
}  // namespace operators
}  // namespace paddle