rank_attention_op.cc 7.2 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/rank_attention_op.h"
#include <memory>
#include <string>
#include <vector>

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

class RankAttentionOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of RankAttentionOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("RankOffset"), true,
        platform::errors::InvalidArgument(
            "Input(RankOffset) of RankAttentionOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("RankParam"), true,
        platform::errors::InvalidArgument(
            "Input(RankParam) of RankAttentionOp should not be null."));
37 38 39 40 41 42 43 44
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("InsRank"), true,
        platform::errors::InvalidArgument(
            "Output(InsRank) of RankAttentionOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("InputHelp"), true,
        platform::errors::InvalidArgument(
            "Output(InputHelp) of RankAttentionOp should not be null."));
S
ShenLiang 已提交
45 46 47 48 49 50 51 52 53 54 55
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::InvalidArgument(
            "Output(Out) of RankAttentionOp should not be null."));
    auto max_rank = ctx->Attrs().Get<int>("MaxRank");

    auto x_dims = ctx->GetInputDim("X");
    auto ins_num = x_dims[0];
    auto param_dims = ctx->GetInputDim("RankParam");
    auto para_col = param_dims[1];
    auto rank_offset_dims = ctx->GetInputDim("RankOffset");
56 57
    auto x_fea_dim = x_dims[1];
    auto block_matrix_row = max_rank * x_fea_dim;
S
ShenLiang 已提交
58 59 60

    PADDLE_ENFORCE_EQ((rank_offset_dims[1] - 1) / 2, max_rank,
                      platform::errors::InvalidArgument(
S
ShenLiang 已提交
61 62 63
                          "Input(RankOffset) has wrong columns, "
                          "except columns to be %d, but got %d",
                          max_rank, (rank_offset_dims[1] - 1) / 2));
S
ShenLiang 已提交
64 65

    ctx->SetOutputDim("Out", {ins_num, para_col});
66 67
    ctx->SetOutputDim("InputHelp", {ins_num, block_matrix_row});
    ctx->SetOutputDim("InsRank", {ins_num, 1});
S
ShenLiang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }
};

class RankAttentionGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) should not be null"));
    PADDLE_ENFORCE_EQ(ctx->HasInput("RankParam"), true,
                      platform::errors::InvalidArgument(
                          "Input(RankParam) should not be null"));
    PADDLE_ENFORCE_EQ(ctx->HasInput("RankOffset"), true,
                      platform::errors::InvalidArgument(
                          "Input(RankOffset) should not be null"));
94 95 96 97 98 99
    PADDLE_ENFORCE_EQ(ctx->HasInput("InputHelp"), true,
                      platform::errors::InvalidArgument(
                          "Input(InputHelp) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("InsRank"), true,
        platform::errors::InvalidArgument("Input(InsRank) should not be null"));
S
ShenLiang 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    ctx->SetOutputDim(framework::GradVarName("RankParam"),
                      ctx->GetInputDim("RankParam"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

class RankAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input tensor of rank_attention_Op operator.");
    AddInput("RankOffset",
             "(Tensor) Input tensor of rank_attention_Op operator.");
    AddInput("RankParam",
             "(Tensor) Input tensor of rank_attention_Op operator.");
122 123
    AddOutput("InputHelp", "Output tensor of rank_attention_Op operator.")
        .AsDispensable();
S
ShenLiang 已提交
124
    AddOutput("Out", "Output tensor of rank_attention_Op operator.");
125 126
    AddOutput("InsRank", "Output tensor of rank_attention_Op operator.")
        .AsDispensable();
S
ShenLiang 已提交
127 128
    AddAttr<int>("MaxRank", "(int, default 3) max rank of rank_attention_Op")
        .SetDefault(3);
129 130
    AddAttr<int>("MaxSize", "(int, default 0) max rank of rank_attention_Op")
        .SetDefault(0);
S
ShenLiang 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    AddComment(R"DOC(
RankAttention Operator.
This Op can calculate rank attention between input and rank_param, 
and rank_param gives the organization of data. Notice: It currently supports GPU device.
This Op exists in contrib, which means that it is not shown to the public.
)DOC");
  }
};

template <typename T>
class RankAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rank_attention_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("RankOffset", this->Input("RankOffset"));
    op->SetInput("RankParam", this->Input("RankParam"));
152
    op->SetInput("InputHelp", this->Output("InputHelp"));
S
ShenLiang 已提交
153
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
154
    op->SetInput("InsRank", this->Output("InsRank"));
S
ShenLiang 已提交
155 156 157 158 159 160 161

    op->SetOutput(framework::GradVarName("RankParam"),
                  this->InputGrad("RankParam"));
    op->SetAttrMap(this->Attrs());
  }
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
162 163
    RankAttentionGradOpNoNeedBufferVarsInference, "X", "RankOffset",
    "RankParam");
S
ShenLiang 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(rank_attention, ops::RankAttentionOp,
                  ops::RankAttentionOpMaker,
                  ops::RankAttentionGradOpMaker<paddle::framework::OpDesc>,
                  ops::RankAttentionGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(rank_attention_grad, ops::RankAttentionGradOp,
                  ops::RankAttentionGradOpNoNeedBufferVarsInference);

REGISTER_OP_CPU_KERNEL(
    rank_attention,
    ops::RankAttentionKernel<paddle::platform::CPUDeviceContext, float>,
    ops::RankAttentionKernel<paddle::platform::CPUDeviceContext, double>);