top_k_v2_op.cc 4.9 KB
Newer Older
W
wawltor 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>

17
#include "paddle/fluid/framework/infershape_utils.h"
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/phi/infermeta/unary.h"
20

W
wawltor 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
namespace paddle {
namespace operators {

class TopkV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context(),
        layout_, library_);
  }
};

class TopkV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) The input of Topk op");
    AddInput("K",
             "(Tensor)  Number of top elements to look for along "
             "the last dimension (along each row for matrices).")
        .AsDispensable();
    AddOutput("Out", "(Tensor) The output tensor of Topk op");
    AddOutput("Indices", "(Tensor) The indices of Topk elements of input");
    AddComment(R"DOC(
Top K operator

If the input is a vector (1d tensor), this operator finds the k largest 
entries in the vector and outputs their values and indices as vectors. 
Thus values[j] is the j-th largest entry in input, and its index is indices[j].

For matrices, this operator computes the top k entries in each row. )DOC");
    AddAttr<int>("k",
                 "(int, default 1) Number of top elements to look for along "
                 "the tensor).")
        .SetDefault(1);
    AddAttr<int>("axis",
                 "the axis to sort and get the k indices, value."
                 "if not set, will get k value in last axis.")
        .SetDefault(-1);
    AddAttr<bool>("largest",
                  "control flag whether to return largest or smallest")
        .SetDefault(true);
    AddAttr<bool>("sorted",
                  "control flag whether to return elements in sorted order")
        .SetDefault(true);
  }
};

class TopkV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) should be not null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Indices"), true,
        platform::errors::InvalidArgument("Input(Indices) should be not null"));
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "Grad Input(Out) should be not null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::InvalidArgument("Grad Output(X) should be not null"));

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

template <typename T>
class TopkV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("top_k_v2_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetInput("Indices", this->Output("Indices"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
124 125
DECLARE_INFER_SHAPE_FUNCTOR(top_k_v2, TopKInferShapeFunctor,
                            PD_INFER_META(phi::TopKInferMeta));
W
wawltor 已提交
126 127
REGISTER_OPERATOR(top_k_v2, ops::TopkV2Op, ops::TopkV2OpMaker,
                  ops::TopkV2GradOpMaker<paddle::framework::OpDesc>,
128 129
                  ops::TopkV2GradOpMaker<paddle::imperative::OpBase>,
                  TopKInferShapeFunctor);
W
wawltor 已提交
130 131

REGISTER_OPERATOR(top_k_v2_grad, ops::TopkV2OpGrad);