completion.py 78.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
from copy import deepcopy
17
import time
18 19 20 21

from paddle.fluid import core
from paddle.fluid import framework

22
from .utils import print_program_with_dist_attr, is_gradient_clip_op
23
from .operators import find_compatible_distributed_operator_impls
24
from .dist_context import get_default_distributed_context, _node_id
25 26 27 28
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
29
from .process_mesh import ProcessMesh
30
from .process_group import get_world_process_group
31
from paddle.distributed.fleet.meta_optimizers.common import OpRole
32 33


34 35 36 37
def compute_compatible_process_mesh(process_mesh_list):
    """Compute the compatible process mesh given a list of process meshes."""
    if not process_mesh_list:
        return None
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    def _compute_compatible_process_mesh_two(pm1, pm2):
        if pm1 is None:
            return True, pm2
        if pm2 is None:
            return True, pm1
        if pm1 == pm2:
            return True, pm1
        if pm1.processes == pm2.processes:
            if len(pm1.topology) >= len(pm2.topology):
                return True, pm1
            else:
                return True, pm2
        process_set1 = set(pm1.processes)
        process_set2 = set(pm2.processes)
        if process_set1.issubset(process_set2):
            return True, pm2
        if process_set2.issubset(process_set1):
            return True, pm1
        return False, None

    compatible_result = None
    for process_mesh in process_mesh_list:
        compatible, compatible_result = _compute_compatible_process_mesh_two(
            compatible_result, process_mesh)
        if not compatible:
            return None
    return copy.deepcopy(compatible_result)


def compute_compatible_dim_mapping(dim_mapping_list):
    """Compute the compatible dim mapping given a list of dim mapping."""
    if not dim_mapping_list:
        return None
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    def _compute_compatible_dim_mapping_two(dm1, dm2):
        if dm1 == -1:
            return True, dm2
        if dm2 == -1:
            return True, dm1
        if dm1 == dm2:
            return True, dm1
        return False, None

    compatible_result = -1
    for mapping in dim_mapping_list:
        compatible, compatible_result = _compute_compatible_dim_mapping_two(
            compatible_result, mapping)
        if not compatible:
            return None
    return compatible_result


def compute_compatible_dims_mapping(dims_mapping_list):
    """Compute the compatible dims mapping given a list of dims mapping.
       Each of dims mapping is also a list.
94
    """
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
        if dims_mapping is None:
            return None
        if len(dims_mapping) != length:
            return None
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
            list(dim_mappings))
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


113 114 115 116 117 118 119 120 121 122 123 124 125 126
def merge_process_mesh_two(pm1, pm2):
    process_set1 = set()
    process_set2 = set()
    if pm1 is None and pm2 is None:
        return None
    if pm1 is not None:
        process_set1 = set(pm1.processes)
    if pm2 is not None:
        process_set2 = set(pm2.processes)
    merged_process_set = process_set1.union(process_set2)
    merged_process_mesh = ProcessMesh(list(merged_process_set))
    return merged_process_mesh


127 128 129 130 131 132 133 134 135 136 137 138 139
def _validate_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(
                process_mesh.topology):
            return False
    for i in range(len(process_mesh.topology)):
        if dims_mapping.count(i) > 1:
            return False
    return True


140
class Completer:
141

142 143 144
    def __init__(self, dist_context):
        assert dist_context is not None
        self._dist_context = dist_context
145
        self._has_prepared = False
146 147 148 149 150 151 152

    def _update_tensor_node_dims_mapping(self, tensor_node, fwd=True):
        changed = False
        if (not tensor_node.is_var()) or (tensor_node.var() is None):
            return False
        tensor_desc = tensor_node.var()
        # Skip reader tensor
153 154 155
        if tensor_desc.type() == core.VarDesc.VarType.READER \
            or tensor_desc.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            or tensor_desc.type == core.VarDesc.VarType.STEP_SCOPES:
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
            return False
        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
            tensor_node)
        assert tensor_dist_attr is not None
        if tensor_dist_attr.is_annotated("dims_mapping"):
            return False
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        if fwd:
            dims_mapping_list = []
            for pred_op_node in tensor_node.inputs:
                if pred_op_node.op() is not None:
                    if pred_op_node.op().type() == "create_py_reader" \
                        or pred_op_node.op().type() == "create_double_buffer_reader" \
                        or pred_op_node.op().type() == "read":
                        continue
                    op_dist_attr = self._dist_context.get_op_dist_attr_for_graph(
                        pred_op_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_desc.name())
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
                dims_mapping_list)
180 181 182
            if not _validate_dims_mapping(compatible_dims_mapping,
                                          tensor_dist_attr.process_mesh):
                return False
183 184 185
            if (compatible_dims_mapping is not None) and \
                (compatible_dims_mapping != tensor_dims_mapping):
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
186 187
                changed = True
        else:
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
            dims_mapping_list = []
            for succ_op_node in tensor_node.outputs:
                if succ_op_node.op() is not None:
                    if succ_op_node.op().type() == "create_py_reader" \
                        or succ_op_node.op().type() == "create_double_buffer_reader" \
                        or succ_op_node.op().type() == "read":
                        continue
                    op_dist_attr = self._dist_context.get_op_dist_attr_for_graph(
                        succ_op_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            tensor_desc.name())
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
                dims_mapping_list)
204 205 206
            if not _validate_dims_mapping(compatible_dims_mapping,
                                          tensor_dist_attr.process_mesh):
                return False
207 208 209
            if (compatible_dims_mapping is not None) and \
                (compatible_dims_mapping != tensor_dims_mapping):
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
210
                changed = True
211
        return changed
212

213 214 215 216 217 218 219 220
    def _update_op_node_dims_mapping(self, op_node, fwd=True):
        changed = False
        if (not op_node.is_op()) or (op_node.op() is None):
            return False
        # Skip reader op
        op_desc = op_node.op()
        if op_desc.type() == "create_py_reader" \
            or op_desc.type() == "create_double_buffer_reader" \
221
            or op_desc.type() == "while" \
222 223 224 225
            or op_desc.type() == "read":
            return False
        dist_op = self._dist_context.get_dist_op_for_graph(op_node)
        op_dist_attr = dist_op.dist_attr
226
        original_op_dist_attr = copy.deepcopy(op_dist_attr)
227 228
        if fwd:
            for tensor_node in op_node.inputs:
229
                if tensor_node.is_var() and tensor_node.var() is not None:
230 231 232 233 234 235 236 237 238 239 240 241 242 243
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_input_dims_mapping(
                            tensor_desc.name()):
                        continue
                    tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            tensor_desc.name())
                        compatible_dims_mapping = compute_compatible_dims_mapping(
                            [op_dims_mapping, tensor_dims_mapping])
244 245 246 247
                        if not _validate_dims_mapping(
                                compatible_dims_mapping,
                                op_dist_attr.process_mesh):
                            continue
248 249 250 251 252 253
                        if (compatible_dims_mapping is not None) and \
                            (compatible_dims_mapping != op_dims_mapping):
                            op_dist_attr.set_input_dims_mapping(
                                tensor_desc.name(), compatible_dims_mapping)
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
254 255
            op_dist_impls = find_compatible_distributed_operator_impls(dist_op,
                                                                       fwd=True)
256 257 258 259 260 261 262 263
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
264 265
                    if op_dist_impl.is_auto_compatible(dist_op) \
                        and dist_op.validate_dist_attr():
266 267 268 269 270 271 272 273
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
274
                    else:
275 276 277 278 279 280 281 282
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
283
        else:
284
            for tensor_node in op_node.outputs:
285
                if tensor_node.is_var() and tensor_node.var() is not None:
286 287 288 289 290 291 292 293 294 295 296 297 298 299
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_output_dims_mapping(
                            tensor_desc.name()):
                        continue
                    tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_desc.name())
                        compatible_dims_mapping = compute_compatible_dims_mapping(
                            [op_dims_mapping, tensor_dims_mapping])
300 301 302 303
                        if not _validate_dims_mapping(
                                compatible_dims_mapping,
                                op_dist_attr.process_mesh):
                            continue
304 305 306 307 308 309
                        if (compatible_dims_mapping is not None) and \
                            (compatible_dims_mapping != op_dims_mapping):
                            op_dist_attr.set_output_dims_mapping(
                                tensor_desc.name(), compatible_dims_mapping)
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
310
            op_dist_impls = find_compatible_distributed_operator_impls(
311
                dist_op, fwd=False)
312 313 314 315 316 317 318 319
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
320 321
                    if op_dist_impl.is_auto_compatible(dist_op) \
                        and dist_op.validate_dist_attr():
322 323 324 325 326 327 328 329
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
330
                    else:
331 332 333 334 335 336 337 338
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
339
        return changed
340

341 342 343 344 345 346 347
    def _update_dims_mapping_between_graphs(self):
        changed = False
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                parent_node)
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                child_node)
348 349
            if parent_node_dist_attr.process_mesh != child_node_dist_attr.process_mesh:
                continue
350 351 352 353
            parent_node_dims_mapping = parent_node_dist_attr.dims_mapping
            child_node_dims_mapping = child_node_dist_attr.dims_mapping
            compatible_dims_mapping = compute_compatible_dims_mapping(
                [parent_node_dims_mapping, child_node_dims_mapping])
354 355 356
            if not _validate_dims_mapping(compatible_dims_mapping,
                                          parent_node_dist_attr.process_mesh):
                return False
357 358 359 360 361 362
            if (compatible_dims_mapping is not None) \
                and (compatible_dims_mapping != parent_node_dims_mapping):
                parent_node_dist_attr.dims_mapping = compatible_dims_mapping
                changed = True
            if (compatible_dims_mapping is not None) \
                and (compatible_dims_mapping != child_node_dims_mapping):
363
                child_node_dist_attr.dims_mapping = compatible_dims_mapping
364 365
                changed = True
        return changed
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    def _update_dims_mapping_for_special(self):
        # Set the dims_mapping of a tensor to the dims_mapping inside the op which produces it
        op_nodes = self._dist_context._serial_ordered_op_nodes
        for op_node in op_nodes:
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() and tensor_node.var() is not None:
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_desc.name())
                        tensor_dist_attr.dims_mapping = op_dims_mapping

384 385 386 387
    def _update_dims_mapping(self):
        # Complete dims_mapping for each node
        reach_fix_point = False
        while not reach_fix_point:
388
            changed = False
389 390 391 392 393 394 395 396 397 398 399 400 401 402
            for is_fwd in [True, False]:
                all_nodes = self._dist_context.serial_ordered_nodes \
                    if is_fwd else reversed(self._dist_context.serial_ordered_nodes)
                for node in all_nodes:
                    if node.is_var() and node.var() is not None:
                        tensor_changed = self._update_tensor_node_dims_mapping(
                            node, fwd=is_fwd)
                        if tensor_changed:
                            changed = True
                    if node.is_op() and node.op() is not None:
                        op_changed = self._update_op_node_dims_mapping(
                            node, fwd=is_fwd)
                        if op_changed:
                            changed = True
403 404 405
                graph_changed = self._update_dims_mapping_between_graphs()
                if graph_changed:
                    changed = True
406
            if changed:
407
                reach_fix_point = False
408
            else:
409
                reach_fix_point = True
410
        self._update_dims_mapping_for_special()
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    def _update_process_mesh_by_nearest(self, op_node, nearest_op_node):
        op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
        # Set the process mesh of the op node by its nearest op node
        if not op_dist_attr.is_annotated("process_mesh"):
            process_mesh = op_dist_attr.process_mesh
            nearest_op_dis_attr = self._dist_context.get_dist_attr_for_graph(
                nearest_op_node)
            nearest_process_mesh = nearest_op_dis_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh(
                [process_mesh, nearest_process_mesh])
            if compatible_process_mesh is not None \
                and process_mesh != compatible_process_mesh:
                op_dist_attr.process_mesh = compatible_process_mesh
        # Skip the process_mesh setting of inputs and outputs of while_op
        if op_dist_attr.op_type == "while":
            return
        # Set the process mesh of the op node's leaf-inputs
        for tensor_node in op_node.inputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                    tensor_node)
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                # Skip the non-leaf var node
                if len(tensor_node.inputs) != 0:
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and tensor_dist_attr.process_mesh != compatible_process_mesh:
                    tensor_dist_attr.process_mesh = compatible_process_mesh
443
                # Set the process mesh of the op node's outputs
444 445 446 447 448 449 450 451 452 453 454 455 456
        for tensor_node in op_node.outputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                    tensor_node)
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and tensor_dist_attr.process_mesh != compatible_process_mesh:
                    tensor_dist_attr.process_mesh = compatible_process_mesh

    def _update_process_mesh_for_specials(self):
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
        def _find_nearest_tensor_node_before(nodes, idx, var_name):
            for node in reversed(nodes[:idx]):
                if node.is_var() and node.var() is not None \
                    and node.var().name() == var_name:
                    return node

        def _find_nearest_tensor_node_after(nodes, idx, var_name):
            for node in nodes[idx + 1:]:
                if node.is_var() and node.var() is not None \
                    and node.var().name() == var_name:
                    return node

        def _find_nodes_related_to_cond(source_node):
            related_nodes = []
            visited = set()
            frontier = list()
            frontier.append(source_node)
            # BFS
            while len(frontier) != 0:
                cur = frontier[0]
                frontier = frontier[1:]
                if _node_id(cur) in visited:
                    continue
                # TODO: need more restrictions
482 483
                neighbors = cur.inputs + cur.outputs
                for node in neighbors:
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
                    if node.is_var() and node.var() is not None:
                        if node.var().type() != core.VarDesc.VarType.READER \
                            and len(node.var().shape()) == 1:
                            frontier.append(node)
                            related_nodes.append(node)
                    if node.is_op() and node.op() is not None:
                        flag = True
                        if node.op().type() == "create_py_reader" \
                            or node.op().type() == "create_double_buffer_reader" \
                            or node.op().type() == "read":
                            flag = False
                        for tensor_node in node.inputs:
                            if tensor_node.is_var() and tensor_node.var(
                            ) is not None:
                                if tensor_node.var().type() == core.VarDesc.VarType.READER \
                                    or len(tensor_node.var().shape()) != 1:
                                    flag = False
                                    break
                        for tensor_node in node.outputs:
                            if tensor_node.is_var() and tensor_node.var(
                            ) is not None:
                                if tensor_node.var().type() == core.VarDesc.VarType.READER \
                                    or len(tensor_node.var().shape()) != 1:
                                    flag = False
                                    break
                        if flag:
                            frontier.append(node)
                            related_nodes.append(node)
                visited.add(_node_id(cur))
            return related_nodes

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        def _make_dims_mapping_replicate(dist_attr):
            if isinstance(dist_attr, TensorDistributedAttribute):
                for i, _ in enumerate(dist_attr.dims_mapping):
                    dist_attr.dims_mapping[i] = -1
            if isinstance(dist_attr, OperatorDistributedAttribute):
                for arg_name in dist_attr.inputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                for arg_name in dist_attr.outputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_output_dims_mapping(arg_name,
                                                      new_dims_mapping)

534 535 536
        # Amend the process meshes related to while_op
        for while_op_node, while_op_node_idx in self._while_op_nodes.values():
            sub_graph_id = while_op_node.op()._block_attr_id("sub_block")
537
            sub_graph = self._dist_context.serial_graph.get_sub_graph(
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
                sub_graph_id)
            sub_graph_nodes = list(sub_graph.all_nodes())
            while_dist_op = self._dist_context.get_dist_op_for_graph(
                while_op_node)
            while_op_dist_attr = while_dist_op.dist_attr

            # Step 1: set the process mesh of while_op to the merged process mesh of its subblock
            merged_process_mesh = while_op_dist_attr.process_mesh
            for node in sub_graph_nodes:
                if (node.is_var() and node.var() is not None) \
                    or (node.is_op() and node.op() is not None):
                    dist_attr = self._dist_context.get_dist_attr_for_graph(node)
                    merged_process_mesh = merge_process_mesh_two(
                        merged_process_mesh, dist_attr.process_mesh)
            while_op_dist_attr.process_mesh = merged_process_mesh
553
            _make_dims_mapping_replicate(while_op_dist_attr)
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

            # Step 2: set the related nodes of while_op to the process mesh of while_op
            # Step 2.1: Find related nodes of cond var the graph of while_op
            cond_tensor_related_nodes = []
            cond_tensor_name = while_op_node.op().input("Condition")[0]
            cond_tensor_node = None
            for node in while_op_node.inputs:
                if node.is_var() and node.var() is not None \
                    and node.var().name() == cond_tensor_name:
                    cond_tensor_node = node
                    cond_tensor_related_nodes.append(cond_tensor_node)
                    break

            cond_tensor_related_nodes.extend(
                _find_nodes_related_to_cond(cond_tensor_node))

            # Step 2.2: Find related nodes of cond var in the subgraph of while_op
            cond_tensor_node = None
            for node in reversed(sub_graph_nodes):
                if node.is_var() and node.var() is not None \
                    and node.var().name() == cond_tensor_name \
                        and len(node.outputs) == 0:
                    cond_tensor_node = node
                    break

            cond_tensor_related_nodes.extend(
                _find_nodes_related_to_cond(cond_tensor_node))
            # Step 2.3: Add the StepScops output of while_op
            stepscopes_tensor_name = while_op_node.op().output("StepScopes")[0]
            stepscopes_tensor_node = None
            for output_node in while_op_node.outputs:
                if output_node.is_var() and output_node.var() is not None \
                    and output_node.var().name() == stepscopes_tensor_name:
                    stepscopes_tensor_node = output_node
            cond_tensor_related_nodes.append(stepscopes_tensor_node)
            # Step 2.4: Set the process meshes of all nodes related to cond var to the process mesh of while op
            for node in cond_tensor_related_nodes:
                tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    node)
                tensor_dist_attr.process_mesh = merged_process_mesh
594
                _make_dims_mapping_replicate(tensor_dist_attr)
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

            # Step 3: set the process meshes of the inputs in while_op to the process meshes of the outside input nodes
            while_op_inputs_dist_attrs = while_op_dist_attr.inputs_dist_attrs
            for tensor_name, tensor_dist_attr in while_op_inputs_dist_attrs.items(
            ):
                nearest_tensor_node = _find_nearest_tensor_node_before(
                    self._dist_context.serial_ordered_nodes, while_op_node_idx,
                    tensor_name)
                nearest_tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    nearest_tensor_node)
                tensor_dist_attr.process_mesh = nearest_tensor_dist_attr.process_mesh

            # Step 4: set the process meshes of the outputs in while_op to the process meshes of the outside output nodes
            while_op_outputs_dist_attrs = while_op_dist_attr.outputs_dist_attrs
            for tensor_name, tensor_dist_attr in while_op_outputs_dist_attrs.items(
            ):
                nearest_tensor_node = _find_nearest_tensor_node_before(
                    self._dist_context.serial_ordered_nodes, while_op_node_idx,
                    tensor_name)
                if nearest_tensor_node is None:
                    nearest_tensor_node = _find_nearest_tensor_node_after(
                        self._dist_context.serial_ordered_nodes,
                        while_op_node_idx, tensor_name)
                nearest_tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    nearest_tensor_node)
                tensor_dist_attr.process_mesh = nearest_tensor_dist_attr.process_mesh

        # Amend the process meshes related to array
        for array_node_list in self._array_nodes.values():
            merged_process_mesh = None
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
                    array_node)
                merged_process_mesh = merge_process_mesh_two(
                    merged_process_mesh, dist_attr.process_mesh)
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
                    array_node)
                dist_attr.process_mesh = merged_process_mesh
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
                _make_dims_mapping_replicate(dist_attr)

    def _update_process_mesh_between_graphs(self):
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                parent_node)
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                child_node)
            parent_node_dist_attr.process_mesh = child_node_dist_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh([
                parent_node_dist_attr.process_mesh,
                child_node_dist_attr.process_mesh
            ])
            if compatible_process_mesh is not None \
                and parent_node_dist_attr.process_mesh != compatible_process_mesh:
                parent_node_dist_attr.process_mesh = compatible_process_mesh
            if compatible_process_mesh is not None \
                and child_node_dist_attr.process_mesh != compatible_process_mesh:
                child_node_dist_attr.process_mesh = compatible_process_mesh
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

    def _update_process_mesh(self):
        ordered_op_nodes = self._dist_context._serial_ordered_op_nodes

        # Step 1: Set the annotated process meshes from tensors to the first ops using them
        ordered_tensor_nodes = self._dist_context._serial_ordered_tensor_nodes
        for tensor_node in ordered_tensor_nodes:
            tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                tensor_node)
            if not tensor_dist_attr.is_annotated("process_mesh"):
                continue
            first_op_node = None
            for op_node in ordered_op_nodes:
                # TODO: Need a better rule for the control flow ops.
                # For now, do not set the process mesh of while_op from its inputs
                if op_node.op().type() == "while":
                    continue
                for input_tensor_node in op_node.inputs:
                    if _node_id(tensor_node) == _node_id(input_tensor_node):
                        first_op_node = op_node
                        break
                if first_op_node is not None:
                    break
            if first_op_node is None:
                continue
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(
                first_op_node)
            if op_dist_attr is not None and not op_dist_attr.is_annotated(
                    "process_mesh"):
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and op_dist_attr.process_mesh != compatible_process_mesh:
                    op_dist_attr.process_mesh = compatible_process_mesh

        # Step 2: set the process meshes of ops with the nearest op before them
        # Step 2.1: find the first op node which has the process mesh
        idx_of_first_op_node_has_process_mesh = -1
        for idx, op_node in enumerate(ordered_op_nodes):
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            if op_dist_attr.process_mesh is not None \
                and idx_of_first_op_node_has_process_mesh == -1:
                idx_of_first_op_node_has_process_mesh = idx
                # Reuse the following method to set the related tensors for same op node
                self._update_process_mesh_by_nearest(op_node, op_node)
        # Step 2.2: set the process meshes of ops by the nearest op node after the first op node
        if idx_of_first_op_node_has_process_mesh + 1 > len(ordered_op_nodes):
            return None
701 702
        for idx, op_node in enumerate(
                ordered_op_nodes[idx_of_first_op_node_has_process_mesh + 1:]):
703
            original_idx = idx_of_first_op_node_has_process_mesh + idx + 1
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
            nearest_op_node = ordered_op_nodes[original_idx - 1]
            nearest_op_dist_attr = self._dist_context.get_dist_attr_for_graph(
                nearest_op_node)
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            assert nearest_op_dist_attr.process_mesh is not None
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)
        # Step 2.3: set the process meshes of ops by the nearest op node before the first op node
        nearest_op_node = ordered_op_nodes[
            idx_of_first_op_node_has_process_mesh]
        for op_node in ordered_op_nodes[:idx_of_first_op_node_has_process_mesh]:
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)

        # Step 3: adjust the process meshes for special ops
        self._update_process_mesh_for_specials()

719
        # Step 4: adjust the process meshes between graphs
720 721
        self._update_process_mesh_between_graphs()

722
    def _prepare(self):
723 724
        if self._has_prepared:
            return
725 726 727 728 729 730 731 732 733 734 735 736 737
        self._while_op_nodes = {}
        self._array_nodes = {}
        self._node_pairs_between_graphs = []
        all_nodes = self._dist_context.serial_ordered_nodes
        for idx, node in enumerate(all_nodes):
            if node.is_op():
                if node.op().type() == "while":
                    self._while_op_nodes[_node_id(node)] = (node, idx)
                if node.op().type() == "read_from_array":
                    array_var_name = node.op().input("X")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
738 739
                    # Add the array input node
                    self._array_nodes[array_var_name].append(node.inputs[0])
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
                if node.op().type() == "write_to_array":
                    array_var_name = node.op().output("Out")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                    self._array_nodes[array_var_name].append(node.outputs[0])
            if node.is_var() and node.var() is not None:
                if node.node.graph_id() != 0:
                    for before_node in reversed(all_nodes[:idx]):
                        if before_node.is_var() and before_node.var() is not None \
                            and before_node.node.graph_id() == node.node.graph_id() - 1 \
                                and before_node.var().name() == node.var().name():
                            self._node_pairs_between_graphs.append(
                                (before_node, node))
                    for after_node in all_nodes[idx + 1:]:
                        if after_node.is_var() and after_node.var() is not None \
                            and after_node.node.graph_id() == node.node.graph_id() - 1 \
                                and after_node.var().name() == node.var().name():
                            self._node_pairs_between_graphs.append(
                                (after_node, node))
760
        self._has_prepared = True
761

762
    def complete_forward_annotation(self, serial_main_program=None):
763 764 765
        """ Complete annotation for the partial annotated serial_main_program.
        Arguments:
            serial_main_program: partial annotated serial_main_program.
766
        Returns:e
767 768 769
            serial_main_program: completed annotated serial_main_program.
        """

770 771 772
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
773
            self._dist_context._serial_main_program = serial_main_program
774

775 776 777 778
        start_time = time.time()
        # print("start time", start_time, flush=True)
        if not self._dist_context.data_parallel:
            self._dist_context.initialize(with_graph=True)
779

780
            # self._dist_context.validate_dist_attr_for_program()
781

782
            self._prepare()
783

784
            self._update_process_mesh()
785

786 787 788 789 790 791 792 793 794 795 796 797
            self._update_dims_mapping()

            # Copy the corresponding distributed attribute from graph to serial_main_program
            self._dist_context.copy_dist_attr_from_graph_to_program()
        else:
            self._dist_context.initialize(with_graph=False)

            # A fast and special completion for data parallel
            self._update_dist_attr_for_dp()

            # print_program_with_dist_attr(self._dist_context.serial_main_program,
            #                              self._dist_context)
798

799
        # NOTE:[HighOrderGrad] update vars and ops distributed attribute in high order gradient
800
        self._complete_high_order_grad_annotation(serial_main_program)
801

802 803 804 805 806
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

807 808 809 810
        end_time = time.time()
        # print("end time", end_time, flush=True)
        # print("elapsed time", end_time - start_time, flush=True)

811 812
        return serial_main_program

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
    def _update_dist_attr_for_dp(self):
        # TODO: we must ensure the world process group contains all ranks
        ranks = get_world_process_group().ranks
        process_mesh = ProcessMesh(ranks)
        for dist_tensor in self._dist_context._dist_tensors_for_program.values(
        ):
            serial_tensor = dist_tensor.serial_tensor
            tensor_dist_attr = dist_tensor.dist_attr
            tensor_dist_attr.process_mesh = process_mesh

        for dist_op in self._dist_context._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            op_desc = serial_op.desc
            op_dist_attr = dist_op.dist_attr
            op_dist_attr.process_mesh = process_mesh
            original_op_dist_attr = copy.deepcopy(op_dist_attr)
            input_xshape_arg_names = []
            if "XShape" in op_desc.input_names():
                input_xshape_arg_names = op_desc.input("XShape")
            for arg_name in serial_op.input_arg_names:
                serial_tensor = dist_op.get_serial_input(arg_name)
                if not serial_tensor.is_parameter:
                    if arg_name not in input_xshape_arg_names:
                        old_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            arg_name)
                        if len(old_dims_mapping) > 0:
                            new_dims_mapping = [0] + [
                                -1 for _ in range(len(old_dims_mapping) - 1)
                            ]
                            op_dist_attr.set_input_dims_mapping(
                                arg_name, new_dims_mapping)
                    else:
                        old_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            arg_name)
                        if len(old_dims_mapping) > 1:
                            new_dims_mapping = [-1, 0] + [
                                -1 for _ in range(len(old_dims_mapping) - 2)
                            ]
                            op_dist_attr.set_input_dims_mapping(
                                arg_name, new_dims_mapping)
                # Set tensor's dims_mapping by the op's
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                    serial_tensor)
                tensor_dist_attr.dims_mapping = op_dist_attr.get_input_dims_mapping(
                    arg_name)
            output_xshape_arg_names = []
            if "XShape" in op_desc.output_names():
                output_xshape_arg_names = op_desc.output("XShape")
            for arg_name in serial_op.output_arg_names:
                serial_tensor = dist_op.get_serial_output(arg_name)
                if not serial_tensor.is_parameter:
                    if arg_name not in output_xshape_arg_names:
                        old_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            arg_name)
                        if len(old_dims_mapping) > 0:
                            new_dims_mapping = [0] + [
                                -1 for _ in range(len(old_dims_mapping) - 1)
                            ]
                            op_dist_attr.set_output_dims_mapping(
                                arg_name, new_dims_mapping)
                    else:
                        old_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            arg_name)
                        if len(old_dims_mapping) > 1:
                            new_dims_mapping = [-1, 0] + [
                                -1 for _ in range(len(old_dims_mapping) - 2)
                            ]
                            op_dist_attr.set_output_dims_mapping(
                                arg_name, new_dims_mapping)
                # Set tensor's dims_mapping by the op's
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                    serial_tensor)
                tensor_dist_attr.dims_mapping = op_dist_attr.get_output_dims_mapping(
                    arg_name)

            op_dist_impls = find_compatible_distributed_operator_impls(
                dist_op, partial=False)
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                for op_dist_impl in op_dist_impls:
                    op_dist_impl.update_dims_mapping(dist_op)
                    if op_dist_impl.is_auto_compatible(dist_op) \
                        and dist_op.validate_dist_attr():
                        op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
                    else:
                        dist_op.dist_attr = backup_op_dist_attr
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
            else:
                dist_op.dist_attr = original_op_dist_attr

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
    def _complete_tensor_dist_attr_by_op(self, serial_main_program=None):
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

        self._dist_context.initialize()

        self._prepare()

        has_set_dist_attr = set()

        all_nodes = self._dist_context.serial_ordered_nodes
        for node in all_nodes:
            if node.is_op():
                if node.op().type() in ["while"]:
                    continue
                dist_op = self._dist_context.get_dist_op_for_graph(node)
                op_dist_attr = dist_op.dist_attr
                for tensor_node in node.inputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        # Skip the non-leaf var node
                        if len(tensor_node.inputs) != 0:
                            continue
                        tensor_desc = tensor_node.var()
                        tensor_name = tensor_desc.name()
                        tensor = dist_op.get_serial_input(tensor_name)
                        # Use the first op to set the tensor dist attr
                        if tensor_name in has_set_dist_attr:
                            continue
                        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node)
                        tensor_dist_attr.process_mesh = op_dist_attr.process_mesh
                        tensor_dist_attr.dims_mapping = op_dist_attr.get_input_dims_mapping(
                            tensor_name) if tensor.is_parameter else [
                                -1 for i in tensor_desc.shape()
                            ]
                        has_set_dist_attr.add(tensor_name)
                for tensor_node in node.outputs:
                    if tensor_node.is_var() and tensor_node.var() is not None:
                        tensor_name = tensor_node.var().name()
                        if tensor_name in has_set_dist_attr:
                            continue
                        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                            tensor_node)
                        tensor_dist_attr.process_mesh = op_dist_attr.process_mesh
                        tensor_dist_attr.dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_name)
                        has_set_dist_attr.add(tensor_name)

        self._update_process_mesh_for_specials()

        self._update_process_mesh_between_graphs()

        self._update_dims_mapping_for_special()

        self._update_dims_mapping_between_graphs()

        # Copy the corresponding distributed attribute from graph to serial_main_program
        self._dist_context.copy_dist_attr_from_graph_to_program()

        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

974
    def _complete_high_order_grad_annotation(self, serial_main_program=None):
975
        """
976
        NOTE:
977 978 979 980
            [HighOrderGrad] Complete the annotation of vars and ops only for high order gradient.
            This function is temporary to support high order gradient, and will be removed in the future.
        """

981 982 983 984 985
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context._serial_main_program = serial_main_program

986 987 988 989 990 991 992
        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_op_by_id(ops, id):
            for op in ops:
993
                if op.desc.original_id() == id:
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
                    return op
            return None

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
        grad_var_to_var = dist_op_context.grad_var_to_var

        appended_grad_times = 0
        for idx in range(0, len(ops)):
            op = ops[idx]
            if int(op.attr('op_role')) == int(
                    core.op_proto_and_checker_maker.OpRole.Forward):
                continue

            if int(op.attr('op_role')) == int(
                    core.op_proto_and_checker_maker.OpRole.Backward) and int(
                        ops[idx - 1].attr('op_role')) == int(
                            core.op_proto_and_checker_maker.OpRole.Forward):
                appended_grad_times += 1

1015 1016 1017 1018 1019 1020
            if int(op.attr('op_role')) == int(
                    int(core.op_proto_and_checker_maker.OpRole.Backward)
                    | int(core.op_proto_and_checker_maker.OpRole.Loss)):
                assert op.type == "fill_constant"
                break

1021 1022 1023
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1024 1025
            if grad_op.desc.original_id(
            ) in dist_op_context.grad_op_id_to_op_id:
1026
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1027 1028 1029
                forward_op = _get_op_by_id(
                    ops, dist_op_context.grad_op_id_to_op_id[
                        grad_op.desc.original_id()])
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
                assert forward_op is not None

                fwd_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
                    forward_op)
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
                grad_op_dist_attr = OperatorDistributedAttribute()
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh

                for input_name in grad_op.input_arg_names:
                    if input_name not in forward_op.input_arg_names and input_name not in forward_op.output_arg_names:
                        if input_name in grad_var_to_var[appended_grad_times]:
                            fwd_name = grad_var_to_var[appended_grad_times][
                                input_name]
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
                                fwd_name)
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                                input_var).dims_mapping
                    else:
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
                            ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
                                input_name)
                        else:
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
                                input_name)
                    assert ref_dims_mapping is not None, "[{}] 's dims mapping is NONE".format(
                        input_name)
1058 1059
                    grad_op_dist_attr.set_input_dims_mapping(
                        input_name, ref_dims_mapping)
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var[appended_grad_times]
                    fwd_name = grad_var_to_var[appended_grad_times][output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
                        fwd_name)
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
1074 1075
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_name, ref_dims_mapping)
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)

            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
            else:

                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
                    assert output_name in grad_var_to_var[appended_grad_times], \
                        "sum op's output '{}' has no corresponding var".format(
                        output_name)
                    ref_fwd_var_name = grad_var_to_var[appended_grad_times][
                        output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
                    ref_fwd_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_fwd_var)
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
                            var_name, ref_fwd_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_name, ref_fwd_dims_mapping)

1112
                elif grad_op.type == 'fill_any_like':
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
                    ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_var)
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1130 1131 1132 1133
                    grad_op_dist_attr.set_input_dims_mapping(
                        ref_var_name, ref_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_var_name, ref_dims_mapping)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

                elif grad_op.type in ['shape', 'fill_constant']:
                    continue

                else:
                    raise ValueError("got unexpect op [{}]".format(
                        str(grad_op.type)))

                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)

1145
    def complete_backward_annotation(self, serial_main_program=None):
1146
        """Complete the annotation of vars and ops in the backward phase for parallel program."""
1147

1148 1149 1150
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
1151
            self._dist_context._serial_main_program = serial_main_program
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_forward_varname_from_grad_varname(grad_var_name):
            assert _is_grad_var_name(
                grad_var_name), "[{}] is not a grad varnme.".format(
                    grad_var_name)
            return grad_var_name[:grad_var_name.find("@GRAD")]

        def _get_op_by_id(ops, id):
            for op in ops:
1166
                if op.desc.original_id() == id:
1167 1168 1169 1170 1171 1172
                    return op
            return None

        first_backward_op_idx = -1
        for idx, op in enumerate(serial_main_program.global_block().ops):
            if int(op.attr('op_role')) == int(
1173 1174
                    int(core.op_proto_and_checker_maker.OpRole.Backward)
                    | int(core.op_proto_and_checker_maker.OpRole.Loss)):
1175 1176 1177 1178 1179 1180 1181 1182 1183
                assert op.type == "fill_constant"
                first_backward_op_idx = idx
                break

        assert first_backward_op_idx >= 0, "No backward procedure found in this program."

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
1184 1185
        grad_var_to_var = dist_op_context.grad_var_to_var[len(
            dist_op_context.grad_var_to_var)]
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

        for idx in range(first_backward_op_idx, len(ops)):

            # complete the initial grad loss op
            if idx == first_backward_op_idx:
                assert ops[idx].type == "fill_constant"
                assert len(
                    ops[idx].input_arg_names
                ) == 0, "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].input_arg_names))
                assert len(
                    ops[idx].output_arg_names
                ) == 1, "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].output_arg_names))

                grad_var = vars[ops[idx].output_arg_names[0]]
                forward_var_name = _get_forward_varname_from_grad_varname(
                    grad_var.name)
                forward_var = vars[forward_var_name]

                # TODO complete other attribte for grad var
                tensor_dist_attr = TensorDistributedAttribute()
                process_mesh = self._dist_context.get_tensor_dist_attr_for_program(
                    forward_var).process_mesh
                dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                    forward_var).dims_mapping
                tensor_dist_attr.dims_mapping = dims_mapping
                tensor_dist_attr.process_mesh = process_mesh
                self._dist_context.set_tensor_dist_attr_for_program(
                    grad_var, tensor_dist_attr)
1216

1217 1218 1219 1220
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = process_mesh
                op_dist_attr.set_output_dims_mapping(grad_var.name,
                                                     dims_mapping)
1221 1222
                self._dist_context.set_op_dist_attr_for_program(
                    ops[idx], op_dist_attr)
1223
                continue
1224

1225 1226 1227
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
1228 1229
            if grad_op.desc.original_id(
            ) in dist_op_context.grad_op_id_to_op_id:
1230
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
1231 1232 1233 1234
                forward_op = _get_op_by_id(
                    ops[:first_backward_op_idx],
                    dist_op_context.grad_op_id_to_op_id[
                        grad_op.desc.original_id()])
1235 1236
                assert forward_op is not None

J
JZ-LIANG 已提交
1237
                if grad_op.type == "concat" and forward_op.type == "split":
Z
zhaoyingli 已提交
1238
                    forward_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
J
JZ-LIANG 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
                        forward_op)
                    output_var = vars[grad_op.desc.output('Out')[0]]
                    split_input_var_name = forward_op.input("X")[0]
                    ref_dims_mapping = forward_op_dist_attr.get_input_dims_mapping(
                        split_input_var_name)
                    ref_mesh = forward_op_dist_attr.process_mesh

                    grad_op_dist_attr = OperatorDistributedAttribute()
                    for input_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
                            input_name, ref_dims_mapping)

                    output_var_dist_attr = TensorDistributedAttribute()
                    output_var_dist_attr.dims_mapping = ref_dims_mapping
                    output_var_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1254
                    self._dist_context.set_tensor_dist_attr_for_program(
J
JZ-LIANG 已提交
1255 1256
                        output_var, output_var_dist_attr)

1257 1258
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_var.name, ref_dims_mapping)
J
JZ-LIANG 已提交
1259
                    grad_op_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1260 1261
                    self._dist_context.set_op_dist_attr_for_program(
                        grad_op, grad_op_dist_attr)
1262 1263 1264
                    grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                    grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx

J
JZ-LIANG 已提交
1265 1266
                    continue

1267
                fwd_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
1268
                    forward_op)
1269
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
1270
                grad_op_dist_attr = OperatorDistributedAttribute()
1271
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh
1272 1273

                for input_name in grad_op.input_arg_names:
1274 1275 1276 1277 1278 1279 1280 1281 1282
                    if input_name not in forward_op.input_arg_names and input_name not in forward_op.output_arg_names:
                        if input_name in grad_var_to_var:
                            fwd_name = grad_var_to_var[input_name]
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
                                fwd_name)
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                                input_var).dims_mapping
1283
                    else:
1284 1285
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
                            ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1286 1287
                                input_name)
                        else:
1288
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
1289 1290
                                input_name)
                    assert ref_dims_mapping is not None, "[{}] 's dims mapping is NONE".format(
1291
                        input_name)
1292 1293
                    grad_op_dist_attr.set_input_dims_mapping(
                        input_name, ref_dims_mapping)
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var
                    fwd_name = grad_var_to_var[output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
                        fwd_name)
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
1308 1309
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_name, ref_dims_mapping)
1310

1311 1312
                grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type
                grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx
1313 1314
                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)
1315

1316
            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
1317
            else:
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
                    assert output_name in grad_var_to_var, "sum op's output '{}' has no corresponding var".format(
                        output_name)
                    ref_fwd_var_name = grad_var_to_var[output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
                    ref_fwd_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_fwd_var)
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh

                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
1337

1338 1339 1340 1341 1342 1343 1344 1345
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
                            var_name, ref_fwd_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_name, ref_fwd_dims_mapping)
1346 1347
                    grad_op_dist_attr.impl_type = "default"
                    grad_op_dist_attr.impl_idx = 0
1348

1349
                elif grad_op.type == 'fill_any_like':
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
                    ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_var)
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
1367 1368 1369 1370
                    grad_op_dist_attr.set_input_dims_mapping(
                        ref_var_name, ref_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_var_name, ref_dims_mapping)
1371 1372 1373 1374

                else:
                    raise ValueError("got unexpect op [{}]".format(
                        str(grad_op.type)))
1375 1376 1377 1378

                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)

1379
    def complete_update_annotation(self, serial_main_program):
1380
        """Complete the annotation of vars and ops in the update phase for parallel program."""
1381 1382 1383 1384
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
        from paddle.distributed.auto_parallel.process_group import get_world_process_group
        world_ranks = get_world_process_group().ranks
1385 1386

        # Notice: serial_main_program is actually a dist_main_program of current rank,
1387
        # and must be passed into this function.
1388 1389
        # TODO: We should fix this behavior.

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        learning_rate_completed = False

        for idx in range(len(ops)):

            # complete the annotation of the optimizer op.
            # TODO to add attribute for moment var
            op = ops[idx]
            if int(op.attr('op_role')) == int(OpRole.Optimize):
1400
                if is_gradient_clip_op(op):
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
                    if op.type in [
                            "sum", "sqrt", "fill_constant", "elementwise_max",
                            "elementwise_div"
                    ]:
                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = world_ranks
                        for in_name in op.input_arg_names:
                            in_var = vars[in_name]
                            in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                                in_var)
                            op_dist_attr.set_input_dist_attr(
                                in_name, in_dist_attr)
                        for out_name in op.output_arg_names:
                            out_var = vars[out_name]
                            out_dist_attr = TensorDistributedAttribute()
                            out_dist_attr.process_mesh = world_ranks
                            out_dist_attr.dims_mapping = [
                                -1 for _ in range(len(out_var.shape))
                            ]
                            self._dist_context.set_tensor_dist_attr_for_program(
                                out_var, out_dist_attr)
                            op_dist_attr.set_output_dist_attr(
                                out_name, out_dist_attr)
                    else:
                        in_var = vars[op.input("X")[0]]
                        in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                            in_var)
                        assert in_dist_attr is not None
                        ref_process_mesh = in_dist_attr.process_mesh
                        ref_dims_mapping = in_dist_attr.dims_mapping

1432 1433
                        if op.type == "cast" and \
                            ops[idx + 1].type == "elementwise_mul":
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
                            ref_var = vars[ops[idx + 1].input("X")[0]]
                            ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                                ref_var)
                            assert ref_dist_attr is not None
                            ref_process_mesh = ref_dist_attr.process_mesh

                        out_var = vars[op.output("Out")[0]]
                        out_dist_attr = TensorDistributedAttribute()
                        out_dist_attr.process_mesh = ref_process_mesh
                        if out_var.shape == in_var.shape:
                            out_dist_attr.dims_mapping = ref_dims_mapping
                        else:
                            assert len(
                                out_var.shape) == 1 and out_var.shape[0] == 1
                            out_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
                            out_var, out_dist_attr)

                        op_dist_attr = OperatorDistributedAttribute()
                        op_dist_attr.process_mesh = ref_process_mesh
                        op_dist_attr.set_input_dist_attr(
                            in_var.name, in_dist_attr)
                        op_dist_attr.set_output_dist_attr(
                            out_var.name, out_dist_attr)
Z
zhaoyingli 已提交
1458 1459 1460

                    self._dist_context.set_op_dist_attr_for_program(
                        op, op_dist_attr)
1461 1462

                if "Grad" in op.input_names and "Param" in ops[idx].input_names:
1463 1464 1465 1466
                    assert len(
                        op.input("Param")) == 1, "Only support one-to-one now."
                    assert len(
                        op.input("Grad")) == 1, "Only support one-to-one now."
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
                    param = vars[op.input("Param")[0]]
                    grad_var = vars[op.input("Grad")[0]]

                    param_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        param)
                    assert param_dist_attr is not None
                    ref_process_mesh = self._dist_context.get_tensor_dist_attr_for_program(
                        param).process_mesh
                    assert ref_process_mesh is not None
                    ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                        param).dims_mapping
                    assert ref_dims_mapping is not None
                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
                    op_dist_attr.set_input_dims_mapping(grad_var.name,
                                                        ref_dims_mapping)
                    op_dist_attr.set_input_dims_mapping(param.name,
                                                        ref_dims_mapping)
1485 1486
                    op_dist_attr.set_output_dims_mapping(
                        param.name, ref_dims_mapping)
1487 1488
                    learning_var = vars[op.input("LearningRate")[0]]
                    op_dist_attr.set_input_dims_mapping(learning_var.name, [-1])
1489 1490
                    op_dist_attr.set_output_dims_mapping(
                        learning_var.name, [-1])
1491 1492 1493 1494

                    if not learning_rate_completed:
                        learning_rate_completed = True
                        var_dist_attr = TensorDistributedAttribute()
1495
                        var_dist_attr.process_mesh = world_ranks
1496 1497 1498 1499 1500 1501 1502
                        var_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
                            learning_var, var_dist_attr)

                    for input_name in op.desc.input_names():

                        if input_name in [
1503 1504 1505 1506 1507 1508 1509
                                'Param',
                                'Grad',
                                'LearningRate',
                                "SkipUpdate",
                                "Beta1Tensor",
                                "Beta2Tensor",
                                "EpsilonTensor",
1510 1511
                        ]:
                            continue
1512 1513
                        if len(op.desc.input(input_name)) == 0:
                            continue
1514 1515 1516 1517 1518 1519 1520

                        assert len(op.desc.input(input_name)) == 1
                        input_var = vars[op.desc.input(input_name)[0]]
                        input_var_attr = TensorDistributedAttribute()

                        if "Beta1Pow" in input_name or "Beta2Pow" in input_name:
                            input_var_attr.dims_mapping = [-1]
1521 1522 1523 1524
                            op_dist_attr.set_input_dims_mapping(
                                input_var.name, [-1])
                            op_dist_attr.set_output_dims_mapping(
                                input_var.name, [-1])
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
                        else:
                            input_var_attr.dims_mapping = ref_dims_mapping
                            op_dist_attr.set_input_dims_mapping(
                                input_var.name, ref_dims_mapping)
                            op_dist_attr.set_output_dims_mapping(
                                input_var.name, ref_dims_mapping)

                        input_var_attr.process_mesh = ref_process_mesh
                        self._dist_context.set_tensor_dist_attr_for_program(
                            input_var, input_var_attr)

                    self._dist_context.set_op_dist_attr_for_program(
                        op, op_dist_attr)
                    continue
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

    def complete_prim_annotation(self, serial_main_program=None):
        """
        fill default data parallel annotation for program with primitive operators.

        Arguments:
            serial_main_program: partial annotated serial_main_program.
        Returns:
            serial_main_program: completed annotated serial_main_program.
        """
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
Z
zhaoyingli 已提交
1552
            self._dist_context._serial_main_program = serial_main_program
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

        import time

        start_time = time.time()
        self._dist_context._is_initialized = True

        start_time = time.time()
        self._dist_context._init_dist_attr_for_program()

        start_time = time.time()
        self._init_global_mesh_for_program()

        # Do the validation check and amend some completion
        start_time = time.time()
        self._dist_context.amend_dist_attr_for_program()
        self._dist_context.validate_dist_attr_for_program()

    def _init_global_mesh_for_program(self):
        # Copy the dist tensors and dist ops annotated by users from the default context
        # global mesh
        from paddle.distributed.auto_parallel.process_group import get_world_process_group
        world_ranks = get_world_process_group().ranks

        for block in self._dist_context._serial_main_program.blocks:
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                dist_tensor = self._dist_context.get_dist_tensor_for_program(
                    tensor)
                assert dist_tensor is not None
                dist_tensor.dist_attr.process_mesh = world_ranks
            for op in block.ops:
                # Copy the distributed operators in the default context
                dist_op = self._dist_context.get_dist_op_for_program(op)
                assert dist_op is not None
                dist_op.dist_attr.process_mesh = world_ranks

                # Find the most compatible implemenetations from the distributed operator
1590
                op_dist_impls = find_compatible_distributed_operator_impls(
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
                    dist_op, fwd=True)
                if op_dist_impls is not None:
                    backup_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
                    for op_dist_impl in op_dist_impls:
                        dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                        if op_dist_impl.is_auto_compatible(dist_op):
                            if op_dist_impl.type == "elementwise":
                                dist_op.dist_attr.impl_type = "default"
                            else:
                                dist_op.dist_attr.impl_type = op_dist_impl.type
                            # op_dist_attr.impl_type = op_dist_impl.type
                            dist_op.dist_attr.impl_idx = op_dist_impl.idx
                            break
                        else:
                            dist_op.dist_attr = backup_op_dist_attr