spectral_norm_op.cc 10.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/spectral_norm_op.h"
Z
zhhsplendid 已提交
13 14 15

#include <memory>

D
dengkaipeng 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class SpectralNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
29 30 31 32 33 34 35 36 37 38 39 40 41
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Weight"), true,
        platform::errors::NotFound(
            "Input(Weight) of SpectralNormOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("U"), true,
                      platform::errors::NotFound(
                          "Input(U) of SpectralNormOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("V"), true,
                      platform::errors::NotFound(
                          "Input(V) of SpectralNormOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::NotFound(
                          "Output(Out) of SpectralNormOp should not be null."));
D
dengkaipeng 已提交
42 43

    auto dim_weight = ctx->GetInputDim("Weight");
D
dengkaipeng 已提交
44
    auto rank_weight = dim_weight.size();
45 46 47 48 49 50 51 52 53 54
    PADDLE_ENFORCE_GE(rank_weight, 2,
                      platform::errors::InvalidArgument(
                          "The rank of Input(Weights) should be greater equal "
                          "than 2, but received Weight rank(%d)",
                          rank_weight));
    PADDLE_ENFORCE_LE(rank_weight, 5,
                      platform::errors::InvalidArgument(
                          "The rank of Input(Weights) should be less equal "
                          "than 5, but received Weight rank(%d)",
                          rank_weight));
D
dengkaipeng 已提交
55 56 57

    int dim = ctx->Attrs().Get<int>("dim");
    int power_iters = ctx->Attrs().Get<int>("power_iters");
58 59 60 61 62 63 64 65 66 67
    auto dim_valid = dim == 0 || dim == 1;
    PADDLE_ENFORCE_EQ(
        dim_valid, true,
        platform::errors::InvalidArgument(
            "Attr(dim) can only be 0 or 1, but received %d", dim));
    PADDLE_ENFORCE_GE(
        power_iters, 0,
        platform::errors::InvalidArgument(
            "Attr(power_iters) should be greater equal then 0, but received %d",
            power_iters));
D
dengkaipeng 已提交
68

D
dengkaipeng 已提交
69 70 71 72 73 74 75 76 77
    int h = dim_weight[dim];
    int w = 1;
    for (int i = 0; i < rank_weight; i++) {
      if (i != dim) {
        w *= dim_weight[i];
      }
    }
    auto dim_u = ctx->GetInputDim("U");
    auto dim_v = ctx->GetInputDim("V");
78 79 80

    if (ctx->IsRuntime() || (dim_u[0] > 0 && h > 0)) {
      PADDLE_ENFORCE_EQ(dim_u[0], h,
81 82 83 84 85
                        platform::errors::InvalidArgument(
                            "Input(U) dimension[0] should be equal to "
                            "Input(Weight) dimension[Attr(dim)], but received "
                            "U dimension[0](%d) != Weight dimension[%d](%d)",
                            dim_u[0], dim, h));
86 87 88 89 90
    }

    if (ctx->IsRuntime() || (dim_v[0] > 0 && w > 0)) {
      PADDLE_ENFORCE_EQ(
          dim_v[0], w,
91 92 93 94 95 96
          platform::errors::InvalidArgument(
              "Input(V) dimension[0] should be equal to the product of "
              "Input(Weight) dimension except dimension[Attr(dim)], but "
              "received V dimension[0](%d) != product of Input(Weight) "
              "dimension(%d)",
              dim_v[0], w));
97
    }
D
dengkaipeng 已提交
98

D
dengkaipeng 已提交
99 100 101 102 103 104 105
    ctx->SetOutputDim("Out", dim_weight);
    ctx->ShareLoD("Weight", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
106 107
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Weight"), ctx.GetPlace());
D
dengkaipeng 已提交
108 109 110 111 112 113 114 115
  }
};

class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Weight",
             "The input weight tensor of spectral_norm operator, "
D
dengkaipeng 已提交
116
             "This can be a 2-D, 3-D, 4-D, 5-D tensor which is the "
K
Kaipeng Deng 已提交
117 118
             "weights of fc, conv1d, conv2d, conv3d layer. "
             "The data type is float32 or float64.");
D
dengkaipeng 已提交
119 120 121
    AddInput("U",
             "The weight_u tensor of spectral_norm operator, "
             "This can be a 1-D tensor in shape [H, 1],"
T
tianshuo78520a 已提交
122
             "H is the 1st dimensions of Weight after reshape"
123 124
             "corresponding by Attr(dim). As for Attr(dim) = 1"
             "in conv2d layer with weight shape [M, C, K1, K2]"
D
dengkaipeng 已提交
125
             "Weight will be reshape to [C, M*K1*K2], U will"
126
             "be in shape [C, 1].");
D
dengkaipeng 已提交
127
    AddInput("V",
128
             "The weight_v tensor of spectral_norm operator, "
D
dengkaipeng 已提交
129
             "This can be a 1-D tensor in shape [W, 1], "
T
tianshuo78520a 已提交
130
             "W is the 2nd dimensions of Weight after reshape "
D
dengkaipeng 已提交
131 132 133
             "corresponding by Attr(dim). As for Attr(dim) = 1 "
             "in conv2d layer with weight shape [M, C, K1, K2] "
             "Weight will be reshape to [C, M*K1*K2], V will "
134
             "be in shape [M*K1*K2, 1].");
D
dengkaipeng 已提交
135 136 137 138 139
    AddOutput("Out",
              "The output weight tensor of spectral_norm operator, "
              "This tensor is in same shape with Input(Weight).");

    AddAttr<int>("dim",
D
dengkaipeng 已提交
140 141
                 "The index of dimension which should be permuted "
                 "to the first before reshaping Input(Weight) to "
D
dengkaipeng 已提交
142 143
                 "matrix, it should be set as 0 if Input(Weight) is "
                 "the weight of fc layer, and should be set as 1 if "
D
dengkaipeng 已提交
144 145
                 "Input(Weight) is the weight of conv layer, "
                 "default 0.")
D
dengkaipeng 已提交
146 147
        .SetDefault(0);
    AddAttr<int>("power_iters",
D
dengkaipeng 已提交
148 149
                 "number of power iterations to calculate "
                 "spectral norm, default 1.")
D
dengkaipeng 已提交
150 151
        .SetDefault(1);
    AddAttr<float>("eps",
D
dengkaipeng 已提交
152
                   "epsilon for numerical stability in "
K
Kaipeng Deng 已提交
153 154 155
                   "calculating norms, it will be added to "
                   "the denominator to aviod divide zero. "
                   "Default 1e-12.")
D
dengkaipeng 已提交
156 157 158
        .SetDefault(1e-12);

    AddComment(R"DOC(
D
dengkaipeng 已提交
159
          This layer calculates the spectral normalization value of weight of
160 161
          fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
          tensor.
D
dengkaipeng 已提交
162

163 164 165
          Spectral normalization stabilizes the training of critic in GANs
          (Generative Adversarial Networks). This layer rescaling weight tensor
          with spectral normalize value.
D
dengkaipeng 已提交
166

167
          For spectral normalization calculations, we rescaling weight
D
dengkaipeng 已提交
168
          tensor with :math:`\sigma`, while :math:`\sigma{\mathbf{W}}` is
169

D
dengkaipeng 已提交
170
            $$\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \\frac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}$$
171

D
dengkaipeng 已提交
172
          We calculate :math:`\sigma{\mathbf{W}}` through power iterations as
173

D
dengkaipeng 已提交
174
            $$
175
            \mathbf{v} = \mathbf{W}^{T} \mathbf{u}
D
dengkaipeng 已提交
176 177 178 179 180
            $$
            $$
            \mathbf{v} = \\frac{\mathbf{v}}{\|\mathbf{v}\|_2}
            $$
            $$
181
            \mathbf{u} = \mathbf{W}^{T} \mathbf{v}
D
dengkaipeng 已提交
182 183 184 185
            $$
            $$
            \mathbf{u} = \\frac{\mathbf{u}}{\|\mathbf{u}\|_2}
            $$
186

D
dengkaipeng 已提交
187
          And :math:`\sigma` should be
188

D
dengkaipeng 已提交
189
            $$\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}$$
190 191 192

          For details of spectral normalization, please refer to paper: 
          `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
D
dengkaipeng 已提交
193 194 195 196
         )DOC");
  }
};

H
hong 已提交
197 198
template <typename T>
class SpectralNormGradOpMaker : public framework::SingleGradOpMaker<T> {
Z
zhhsplendid 已提交
199
 public:
H
hong 已提交
200
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Z
zhhsplendid 已提交
201 202

 protected:
203
  void Apply(GradOpPtr<T> op) const override {
Z
zhhsplendid 已提交
204 205
    op->SetType("spectral_norm_grad");

H
hong 已提交
206 207 208 209
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Weight", this->Input("Weight"));
    op->SetInput("U", this->Input("U"));
    op->SetInput("V", this->Input("V"));
Z
zhhsplendid 已提交
210

H
hong 已提交
211
    op->SetOutput(framework::GradVarName("Weight"), this->InputGrad("Weight"));
Z
zhhsplendid 已提交
212

H
hong 已提交
213
    op->SetAttrMap(this->Attrs());
Z
zhhsplendid 已提交
214 215 216
  }
};

D
dengkaipeng 已提交
217 218 219 220 221 222
class SpectralNormOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
223 224 225 226 227 228 229 230 231 232 233 234
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Weight"), true,
        platform::errors::NotFound("Input(Weight) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("U"), true,
        platform::errors::NotFound("Input(U) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("V"), true,
        platform::errors::NotFound("Input(V) should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::NotFound("Input(Out@GRAD) should not be null"));
D
dengkaipeng 已提交
235 236 237 238 239 240 241 242
    auto dim_x = ctx->GetInputDim("Weight");
    if (ctx->HasOutput(framework::GradVarName("Weight"))) {
      ctx->SetOutputDim(framework::GradVarName("Weight"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
243 244
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Weight"), ctx.GetPlace());
D
dengkaipeng 已提交
245 246 247 248 249 250 251 252
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(spectral_norm, ops::SpectralNormOp, ops::SpectralNormOpMaker,
H
hong 已提交
253 254
                  ops::SpectralNormGradOpMaker<paddle::framework::OpDesc>,
                  ops::SpectralNormGradOpMaker<paddle::imperative::OpBase>);
D
dengkaipeng 已提交
255 256 257 258 259 260 261 262 263
REGISTER_OPERATOR(spectral_norm_grad, ops::SpectralNormOpGrad);
REGISTER_OP_CPU_KERNEL(
    spectral_norm,
    ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    spectral_norm_grad,
    ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, double>);