detection_util.h 10.9 KB
Newer Older
S
sweetsky0901 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/selected_rows.h"
#include "paddle/platform/device_context.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
struct BBox {
  BBox(T x_min, T y_min, T x_max, T y_max)
      : x_min(x_min),
        y_min(y_min),
        x_max(x_max),
        y_max(y_max),
        is_difficult(false) {}

  BBox() {}

  T get_width() const { return x_max - x_min; }

  T get_height() const { return y_max - y_min; }

  T get_center_x() const { return (x_min + x_max) / 2; }

  T get_center_y() const { return (y_min + y_max) / 2; }

  T get_area() const { return get_width() * get_height(); }

  // coordinate of bounding box
  T x_min;
  T y_min;
  T x_max;
  T y_max;
  // whether difficult object (e.g. object with heavy occlusion is difficult)
  bool is_difficult;
};
// KNCHW ==> NHWC
template <typename T>
int appendWithPermute(const framework::Tensor& input,
                      framework::Tensor* output) {
  const int input_nums = input.dims()[0];
  const int batch_size = input.dims()[1];
  const int channels = input.dims()[2];
  const int height = input.dims()[3];
  const int weight = input.dims()[4];
  int image_size = height * weight;
  int offset = 0;
  for (int p = 0; p < input_nums; ++p) {
    int in_p_offset = p * batch_size * channels * image_size;
    for (int n = 0; n < batch_size; ++n) {
      int in_n_offset = n * channels * image_size;
      int out_n_offset = n * input.numel() / batch_size + offset;
      int in_stride = image_size;
      int out_stride = channels;
      const T* in_data = input.data<T>() + in_p_offset + in_n_offset;
      T* out_data = output->data<T>() + out_n_offset;
      for (int i = 0; i < channels; ++i) {
        for (int c = 0; c < image_size; ++c) {
          out_data[out_stride * c + i] = in_data[i * in_stride + c];
        }
      }
    }
    offset += image_size * channels;
  }
  return 0;
}
template <typename T>
void getBBoxFromPriorData(const T* prior_data, const size_t num_bboxes,
                          std::vector<BBox<T>>& bbox_vec) {
  size_t out_offset = bbox_vec.size();
  bbox_vec.resize(bbox_vec.size() + num_bboxes);
  for (size_t i = 0; i < num_bboxes; ++i) {
    BBox<T> bbox;
    bbox.x_min = *(prior_data + i * 8);
    bbox.y_min = *(prior_data + i * 8 + 1);
    bbox.x_max = *(prior_data + i * 8 + 2);
    bbox.y_max = *(prior_data + i * 8 + 3);
    bbox_vec[out_offset + i] = bbox;
  }
}
template <typename T>
void getBBoxVarFromPriorData(const T* prior_data, const size_t num,
                             std::vector<std::vector<T>>& var_vec) {
  size_t out_offset = var_vec.size();
  var_vec.resize(var_vec.size() + num);
  for (size_t i = 0; i < num; ++i) {
    std::vector<T> var;
    var.push_back(*(prior_data + i * 8 + 4));
    var.push_back(*(prior_data + i * 8 + 5));
    var.push_back(*(prior_data + i * 8 + 6));
    var.push_back(*(prior_data + i * 8 + 7));
    var_vec[out_offset + i] = var;
  }
}
template <typename T>
BBox<T> decodeBBoxWithVar(BBox<T>& prior_bbox,
                          const std::vector<T>& prior_bbox_var,
                          const std::vector<T>& loc_pred_data) {
  T prior_bbox_width = prior_bbox.get_width();
  T prior_bbox_height = prior_bbox.get_height();
  T prior_bbox_center_x = prior_bbox.get_center_x();
  T prior_bbox_center_y = prior_bbox.get_center_y();

  T decoded_bbox_center_x =
      prior_bbox_var[0] * loc_pred_data[0] * prior_bbox_width +
      prior_bbox_center_x;
  T decoded_bbox_center_y =
      prior_bbox_var[1] * loc_pred_data[1] * prior_bbox_height +
      prior_bbox_center_y;
  T decoded_bbox_width =
      std::exp(prior_bbox_var[2] * loc_pred_data[2]) * prior_bbox_width;
  T decoded_bbox_height =
      std::exp(prior_bbox_var[3] * loc_pred_data[3]) * prior_bbox_height;

  BBox<T> decoded_bbox;
  decoded_bbox.x_min = decoded_bbox_center_x - decoded_bbox_width / 2;
  decoded_bbox.y_min = decoded_bbox_center_y - decoded_bbox_height / 2;
  decoded_bbox.x_max = decoded_bbox_center_x + decoded_bbox_width / 2;
  decoded_bbox.y_max = decoded_bbox_center_y + decoded_bbox_height / 2;

  return decoded_bbox;
}
template <typename T1, typename T2>
bool sortScorePairDescend(const std::pair<T1, T2>& pair1,
                          const std::pair<T1, T2>& pair2) {
  return pair1.first > pair2.first;
}
template <typename T>
bool sortScorePairDescend(const std::pair<T, BBox<T>>& pair1,
                          const std::pair<T, BBox<T>>& pair2);
template <typename T>
T jaccardOverlap(const BBox<T>& bbox1, const BBox<T>& bbox2) {
  if (bbox2.x_min > bbox1.x_max || bbox2.x_max < bbox1.x_min ||
      bbox2.y_min > bbox1.y_max || bbox2.y_max < bbox1.y_min) {
    return 0.0;
  } else {
    T inter_x_min = std::max(bbox1.x_min, bbox2.x_min);
    T inter_y_min = std::max(bbox1.y_min, bbox2.y_min);
    T interX_max = std::min(bbox1.x_max, bbox2.x_max);
    T interY_max = std::min(bbox1.y_max, bbox2.y_max);

    T inter_width = interX_max - inter_x_min;
    T inter_height = interY_max - inter_y_min;
    T inter_area = inter_width * inter_height;

    T bbox_area1 = bbox1.get_area();
    T bbox_area2 = bbox2.get_area();

    return inter_area / (bbox_area1 + bbox_area2 - inter_area);
  }
}

template <typename T>
void applyNMSFast(const std::vector<BBox<T>>& bboxes, const T* conf_score_data,
                  size_t class_idx, size_t top_k, T conf_threshold,
                  T nms_threshold, size_t num_priors, size_t num_classes,
                  std::vector<size_t>* indices) {
  std::vector<std::pair<T, size_t>> scores;
  for (size_t i = 0; i < num_priors; ++i) {
    size_t conf_offset = i * num_classes + class_idx;
    if (conf_score_data[conf_offset] > conf_threshold)
      scores.push_back(std::make_pair(conf_score_data[conf_offset], i));
  }
  std::stable_sort(scores.begin(), scores.end(),
                   sortScorePairDescend<T, size_t>);
  if (top_k > 0 && top_k < scores.size()) scores.resize(top_k);
  while (scores.size() > 0) {
    const size_t idx = scores.front().second;
    bool keep = true;
    for (size_t i = 0; i < indices->size(); ++i) {
      if (keep) {
        const size_t saved_idx = (*indices)[i];
        T overlap = jaccardOverlap<T>(bboxes[idx], bboxes[saved_idx]);
        keep = overlap <= nms_threshold;
      } else {
        break;
      }
    }
    if (keep) indices->push_back(idx);
    scores.erase(scores.begin());
  }
}
template <typename T>
int getDetectionIndices(
    const T* conf_data, const size_t num_priors, const size_t num_classes,
    const size_t background_label_id, const size_t batch_size,
    const T conf_threshold, const size_t nms_top_k, const T nms_threshold,
    const size_t top_k,
    const std::vector<std::vector<BBox<T>>>& all_decoded_bboxes,
    std::vector<std::map<size_t, std::vector<size_t>>>* all_detection_indices) {
  int total_keep_num = 0;
  for (size_t n = 0; n < batch_size; ++n) {
    const std::vector<BBox<T>>& decoded_bboxes = all_decoded_bboxes[n];
    size_t num_detected = 0;
    std::map<size_t, std::vector<size_t>> indices;
    size_t conf_offset = n * num_priors * num_classes;
    for (size_t c = 0; c < num_classes; ++c) {
      if (c == background_label_id) continue;
      applyNMSFast<T>(decoded_bboxes, conf_data + conf_offset, c, nms_top_k,
                      conf_threshold, nms_threshold, num_priors, num_classes,
                      &(indices[c]));
      num_detected += indices[c].size();
    }
    if (top_k > 0 && num_detected > top_k) {
      // std::vector<pair<T,T>> score_index_pairs;
      std::vector<std::pair<T, std::pair<size_t, size_t>>> score_index_pairs;
      for (size_t c = 0; c < num_classes; ++c) {
        const std::vector<size_t>& label_indices = indices[c];
        for (size_t i = 0; i < label_indices.size(); ++i) {
          size_t idx = label_indices[i];
          score_index_pairs.push_back(
              std::make_pair((conf_data + conf_offset)[idx * num_classes + c],
                             std::make_pair(c, idx)));
        }
      }
      std::sort(score_index_pairs.begin(), score_index_pairs.end(),
                sortScorePairDescend<T, std::pair<size_t, size_t>>);
      score_index_pairs.resize(top_k);
      std::map<size_t, std::vector<size_t>> new_indices;
      for (size_t i = 0; i < score_index_pairs.size(); ++i) {
        size_t label = score_index_pairs[i].second.first;
        size_t idx = score_index_pairs[i].second.second;
        new_indices[label].push_back(idx);
      }
      all_detection_indices->push_back(new_indices);
      total_keep_num += top_k;
    } else {
      all_detection_indices->push_back(indices);
      total_keep_num += num_detected;
    }
  }
  return total_keep_num;
}
template <typename T>
BBox<T> clipBBox(const BBox<T>& bbox) {
  T one = static_cast<T>(1.0);
  T zero = static_cast<T>(0.0);
  BBox<T> clipped_bbox;
  clipped_bbox.x_min = std::max(std::min(bbox.x_min, one), zero);
  clipped_bbox.y_min = std::max(std::min(bbox.y_min, one), zero);
  clipped_bbox.x_max = std::max(std::min(bbox.x_max, one), zero);
  clipped_bbox.y_max = std::max(std::min(bbox.y_max, one), zero);
  return clipped_bbox;
}
template <typename T>
void getDetectionOutput(
    const T* conf_data, const size_t num_kept, const size_t num_priors,
    const size_t num_classes, const size_t batch_size,
    const std::vector<std::map<size_t, std::vector<size_t>>>& all_indices,
    const std::vector<std::vector<BBox<T>>>& all_decoded_bboxes, T* out_data) {
  size_t count = 0;
  for (size_t n = 0; n < batch_size; ++n) {
    for (std::map<size_t, std::vector<size_t>>::const_iterator it =
             all_indices[n].begin();
         it != all_indices[n].end(); ++it) {
      size_t label = it->first;
      const std::vector<size_t>& indices = it->second;
      const std::vector<BBox<T>>& decoded_bboxes = all_decoded_bboxes[n];
      for (size_t i = 0; i < indices.size(); ++i) {
        size_t idx = indices[i];
        size_t conf_offset = n * num_priors * num_classes + idx * num_classes;
        out_data[count * 7] = n;
        out_data[count * 7 + 1] = label;
        out_data[count * 7 + 2] = (conf_data + conf_offset)[label];
        BBox<T> clipped_bbox = clipBBox<T>(decoded_bboxes[idx]);
        out_data[count * 7 + 3] = clipped_bbox.x_min;
        out_data[count * 7 + 4] = clipped_bbox.y_min;
        out_data[count * 7 + 5] = clipped_bbox.x_max;
        out_data[count * 7 + 6] = clipped_bbox.y_max;
        ++count;
      }
    }
  }
  // out.copyFrom(out_data, num_kept * 7);
}
}  // namespace math
}  // namespace operators
}  // namespace paddle