optimizer.py 9.7 KB
Newer Older
Q
qiaolongfei 已提交
1
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils
Y
Yu Yang 已提交
2 3 4 5
import paddle.trainer_config_helpers.optimizers as v1_optimizers
"""
Optimizers(update equation) for SGD method.

D
dzhwinter 已提交
6 7
TODO(zhihong) : create new optimizer with proto config, add new optimizer here

Y
Yu Yang 已提交
8 9
TODO(yuyang18): Complete comments.
"""
Q
qiaolongfei 已提交
10

L
Luo Tao 已提交
11 12 13 14
__all__ = [
    'Momentum', 'Adam', 'Adamax', 'AdaGrad', 'DecayedAdaGrad', 'AdaDelta',
    'RMSProp', 'ModelAverage', 'L2Regularization'
]
Q
qiaolongfei 已提交
15 16 17 18


class Optimizer(object):
    def __init__(self, **kwargs):
Y
Yu Yang 已提交
19
        import py_paddle.swig_paddle as swig_api
Q
qiaolongfei 已提交
20 21 22 23 24 25 26 27
        if 'batch_size' in kwargs:
            del kwargs['batch_size']  # not important for python library.

        def __impl__():
            v1_optimizers.settings(batch_size=1, **kwargs)

        self.__opt_conf_proto__ = config_parser_utils.parse_optimizer_config(
            __impl__)
28 29
        if swig_api is None:
            raise RuntimeError("paddle.v2 currently need swig_paddle")
Q
qiaolongfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43
        self.__opt_conf__ = swig_api.OptimizationConfig.createFromProto(
            self.__opt_conf_proto__)

    def enable_types(self):
        """
        get enable_types for each optimizer.
        enable_types = [value, gradient, momentum, etc]
        For each optimizer(SGD, Adam), GradientMachine should enable different
        buffers.
        """
        tmp = swig_api.ParameterOptimizer.create(self.__opt_conf__)
        assert isinstance(tmp, swig_api.ParameterOptimizer)
        return tmp.getParameterTypes()

Q
qiaolongfei 已提交
44
    def __create_local_updater__(self):
Q
qiaolongfei 已提交
45 46
        return swig_api.ParameterUpdater.createLocalUpdater(self.__opt_conf__)

Q
qiaolongfei 已提交
47
    def __create_remote_updater__(self, pass_num, use_sparse_updater):
Q
qiaolongfei 已提交
48 49
        return swig_api.ParameterUpdater.createRemoteUpdater(
            self.__opt_conf__, pass_num, use_sparse_updater)
Q
qiaolongfei 已提交
50

51 52 53 54 55 56
    def __create_new_remote_updater__(self, pserver_spec):
        return swig_api.ParameterUpdater.createNewRemoteUpdater(
            self.__opt_conf__, pserver_spec)

    def create_updater(self, is_local, num_passes, use_sparse_updater,
                       pserver_spec):
Q
qiaolongfei 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69
        """
        create proper parameter_updater by configuration.
        :param is_local: create local or remote parameter updater
        :param num_passes: remote parameter updater will use this to config
        parameter server.
        :param use_sparse_updater: when use remote updater, if some parameter is
        sparse, updater should do some extra thing:

        ..  code-block:: python

            if use_sparse_remote_updater:
                        gradient_machine.prefetch(in_args)
                        parameter_updater.getParametersRemote()
W
wuyi05 已提交
70 71

        :param pserver_spec: pserver location, eg: localhost:3000
Q
qiaolongfei 已提交
72 73
        :return: parameter_updater
        """
Q
qiaolongfei 已提交
74
        if is_local:
Q
qiaolongfei 已提交
75
            parameter_updater = self.__create_local_updater__()
Q
qiaolongfei 已提交
76
        else:
77 78 79 80 81 82
            if pserver_spec is None:
                parameter_updater = self.__create_remote_updater__(
                    num_passes, use_sparse_updater)
            else:
                parameter_updater = self.__create_new_remote_updater__(
                    pserver_spec)
Q
qiaolongfei 已提交
83
        return parameter_updater
Q
qiaolongfei 已提交
84 85


L
Luo Tao 已提交
86
class Momentum(Optimizer):
Q
qijun 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    """
    SGD Optimizer.

    SGD is an optimization method, trying to find a neural network that
    minimize the "cost/error" of it by iteration. In paddle's implementation
    SGD Optimizer is synchronized, which means all gradients will be wait to
    calculate and reduced into one gradient, then do optimize operation.

    The neural network consider the learning problem of minimizing an objective
    function, that has the form of a sum

    ..  math::

        Q(w) = \\sum_{i}^{n} Q_i(w)

    The value of function Q sometimes is the cost of neural network (Mean
    Square Error between prediction and label for example). The function Q is
    parametrised by w, the weight/bias of neural network. And weights is what to
    be learned. The i is the i-th observation in (trainning) data.

    So, the SGD method will optimize the weight by

    ..  math::

        w = w - \\eta \\nabla Q(w) = w - \\eta \\sum_{i}^{n} \\nabla Q_i(w)

    where :math:`\\eta` is learning rate. And :math:`n` is batch size.
    """

L
Luo Tao 已提交
116 117
    def __init__(self, momentum=None, sparse=False, **kwargs):
        learning_method = v1_optimizers.MomentumOptimizer(
Y
Yu Yang 已提交
118
            momentum=momentum, sparse=sparse)
L
Luo Tao 已提交
119 120 121 122
        super(Momentum, self).__init__(
            learning_method=learning_method, **kwargs)


Q
qiaolongfei 已提交
123
class Adam(Optimizer):
Q
qijun 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    """
    Adam optimizer.
    The details of please refer `Adam: A Method for Stochastic Optimization
    <https://arxiv.org/abs/1412.6980>`_

    ..  math::

        m(w, t) & = \\beta_1 m(w, t-1) + (1 - \\beta_1) \\nabla Q_i(w) \\\\
        v(w, t) & = \\beta_2 v(w, t-1) + (1 - \\beta_2)(\\nabla Q_i(w)) ^2 \\\\
        w & = w - \\frac{\\eta}{\\sqrt{v(w,t) + \\epsilon}}

    :param beta1: the :math:`\\beta_1` in equation.
    :type beta1: float
    :param beta2: the :math:`\\beta_2` in equation.
    :type beta2: float
    :param epsilon: the :math:`\\epsilon` in equation. It is used to prevent
                        divided by zero.
    :type epsilon: float
    """

Q
qiaolongfei 已提交
144 145 146 147 148 149 150
    def __init__(self, beta1=0.9, beta2=0.999, epsilon=1e-8, **kwargs):
        learning_method = v1_optimizers.AdamOptimizer(
            beta1=beta1, beta2=beta2, epsilon=epsilon)
        super(Adam, self).__init__(learning_method=learning_method, **kwargs)


class Adamax(Optimizer):
Q
qijun 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    """
    Adamax optimizer.

    The details of please refer this `Adam: A Method for Stochastic Optimization
    <https://arxiv.org/abs/1412.6980>`_

    ..  math::

        m_t & = \\beta_1 * m_{t-1} + (1-\\beta_1)* \\nabla Q_i(w) \\\\
        u_t & = max(\\beta_2*u_{t-1}, abs(\\nabla Q_i(w))) \\\\
        w_t & = w_{t-1} - (\\eta/(1-\\beta_1^t))*m_t/u_t

    :param beta1: the :math:`\\beta_1` in the equation.
    :type beta1: float
    :param beta2: the :math:`\\beta_2` in the equation.
    :type beta2: float
    """

Q
qiaolongfei 已提交
169 170 171 172 173 174
    def __init__(self, beta1=0.9, beta2=0.999, **kwargs):
        learning_method = v1_optimizers.AdamaxOptimizer(
            beta1=beta1, beta2=beta2)
        super(Adamax, self).__init__(learning_method=learning_method, **kwargs)


L
Luo Tao 已提交
175
class AdaGrad(Optimizer):
Q
qijun 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188
    """
    Adagrad(for ADAptive GRAdient algorithm) optimizer.

    For details please refer this `Adaptive Subgradient Methods for
    Online Learning and Stochastic Optimization
    <http://www.magicbroom.info/Papers/DuchiHaSi10.pdf>`_.

    ..  math::

        G &= \\sum_{\\tau=1}^{t} g_{\\tau} g_{\\tau}^T \\\\
        w & = w - \\eta diag(G)^{-\\frac{1}{2}} \\circ g
    """

L
Luo Tao 已提交
189 190 191 192 193 194
    def __init__(self, **kwargs):
        learning_method = v1_optimizers.AdaGradOptimizer()
        super(AdaGrad, self).__init__(learning_method=learning_method, **kwargs)


class DecayedAdaGrad(Optimizer):
Q
qijun 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    """
    AdaGrad method with decayed sum gradients. The equations of this method
    show as follow.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= 1/sqrt( ( E(g_t^2) + \\epsilon )

    :param rho: The :math:`\\rho` parameter in that equation
    :type rho: float
    :param epsilon: The :math:`\\epsilon` parameter in that equation.
    :type epsilon: float
    """

L
Luo Tao 已提交
210 211 212 213 214 215 216 217
    def __init__(self, rho=0.95, epsilon=1e-06, **kwargs):
        learning_method = v1_optimizers.DecayedAdaGradOptimizer(
            rho=rho, epsilon=epsilon)
        super(DecayedAdaGrad, self).__init__(
            learning_method=learning_method, **kwargs)


class AdaDelta(Optimizer):
Q
qijun 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    """
    AdaDelta method. The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    :param rho: :math:`\\rho` in equation
    :type rho: float
    :param epsilon: :math:`\\rho` in equation
    :type epsilon: float
    """
Q
qijun 已提交
235

L
Luo Tao 已提交
236 237 238 239 240 241 242 243
    def __init__(self, rho=0.95, epsilon=1e-06, **kwargs):
        learning_method = v1_optimizers.AdaDeltaOptimizer(
            rho=rho, epsilon=epsilon)
        super(AdaDelta, self).__init__(
            learning_method=learning_method, **kwargs)


class RMSProp(Optimizer):
Q
qijun 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    """
    RMSProp(for Root Mean Square Propagation) optimizer. For details please
    refer this `slide <http://www.cs.toronto.edu/~tijmen/csc321/slides/
    lecture_slides_lec6.pdf>`_.

    The equations of this method as follows:

    ..  math::

        v(w, t) & = \\rho v(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 \\\\
        w & = w - \\frac{\\eta} {\\sqrt{v(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    :param rho: the :math:`\\rho` in the equation. The forgetting factor.
    :type rho: float
    :param epsilon: the :math:`\\epsilon` in the equation.
    :type epsilon: float
    """

L
Luo Tao 已提交
262 263 264 265 266 267 268 269 270
    def __init__(self, rho=0.95, epsilon=1e-6, **kwargs):
        learning_method = v1_optimizers.RMSPropOptimizer(
            rho=rho, epsilon=epsilon)
        super(RMSProp, self).__init__(learning_method=learning_method, **kwargs)


ModelAverage = v1_optimizers.ModelAverage
L2Regularization = v1_optimizers.L2Regularization

Q
qiaolongfei 已提交
271
if __name__ == '__main__':
Y
Yu Yang 已提交
272
    import py_paddle.swig_paddle as swig_api
Q
qiaolongfei 已提交
273
    swig_api.initPaddle('--use_gpu=false')
L
Luo Tao 已提交
274 275 276 277 278 279 280 281
    for opt in [
            Momentum(), Adam(), Adamax(), AdaGrad(), DecayedAdaGrad(),
            AdaDelta(), RMSProp(), Adam(
                model_average=ModelAverage(average_window=0.5),
                regularization=L2Regularization(rate=0.5),
                gradient_clipping_threshold=25)
    ]:
        print opt, opt.enable_types()