test_selu_op.py 5.0 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import six
20
import paddle.fluid.core as core
C
chengduo 已提交
21
from op_test import OpTest
22
import paddle
23
import paddle.fluid as fluid
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.fluid import compiler, Program, program_guard


def ref_selu(x,
             scale=1.0507009873554804934193349852946,
             alpha=1.6732632423543772848170429916717):
    out = np.copy(x)
    out_flat = out.flatten()
    for i in range(out_flat.size):
        if out_flat[i] < 0:
            out_flat[i] = alpha * np.exp(out_flat[i]) - alpha
        out_flat[i] = scale * out_flat[i]
    out = out_flat.reshape(x.shape)
    return out
C
chengduo 已提交
40 41 42 43 44 45


class SeluTest(OpTest):
    def setUp(self):
        self.op_type = "selu"
        self.x_shape = [3, 5, 5, 10]
46
        self.dtype = np.float64
C
chengduo 已提交
47 48 49 50 51 52 53 54 55 56 57 58
        self.init_x_shape()
        self.init_dtype()

        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946

        x = np.random.normal(size=self.x_shape).astype(self.dtype)

        # Since zero point in selu is not differentiable, avoid randomize
        # zero.
        x[np.abs(x) < 0.005] = 0.02

59
        out = ref_selu(x, scale, alpha)
C
chengduo 已提交
60 61

        self.inputs = {'X': x}
62
        self.outputs = {'Out': out}
C
chengduo 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

        self.attrs = {
            'alpha': alpha,
            'scale': scale,
        }

    def init_x_shape(self):
        pass

    def init_dtype(self):
        pass

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


82 83 84 85 86 87 88 89 90 91 92 93 94 95
class TestSeluAPI(unittest.TestCase):
    # test paddle.nn.SELU, paddle.nn.functional.selu
    def setUp(self):
        self.scale = 1.5
        self.alpha = 2.0
        self.x_np = np.random.normal(size=[3, 5, 5, 10]).astype(np.float64)
        # Since zero point in selu is not differentiable, avoid randomize
        # zero.
        self.x_np[np.abs(self.x_np) < 0.005] = 0.02
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
96
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
            out1 = F.selu(x, self.scale, self.alpha)
            selu = paddle.nn.SELU(self.scale, self.alpha)
            out2 = selu(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_selu(self.x_np, self.scale, self.alpha)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.selu(x, self.scale, self.alpha)
        selu = paddle.nn.SELU(self.scale, self.alpha)
        out2 = selu(x)
        out_ref = ref_selu(self.x_np, self.scale, self.alpha)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.selu(x, self.scale, self.alpha)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_selu(self.x_np, self.scale, self.alpha)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

126
    def test_errors(self):
127
        with paddle.static.program_guard(paddle.static.Program()):
128
            # The input type must be Variable.
129
            self.assertRaises(TypeError, F.selu, 1)
130
            # The input dtype must be float16, float32, float64.
131
            x_int32 = paddle.fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
132
            self.assertRaises(TypeError, F.selu, x_int32)
133
            # The scale must be greater than 1.0
134
            x_fp32 = paddle.fluid.data(name='x_fp32', shape=[12, 10], dtype='float32')
135 136 137
            self.assertRaises(ValueError, F.selu, x_fp32, -1.0)
            # The alpha must be no less than 0
            self.assertRaises(ValueError, F.selu, x_fp32, 1.6, -1.0)
138
            # support the input dtype is float16
139
            x_fp16 = paddle.fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
140
            F.selu(x_fp16)
141 142


C
chengduo 已提交
143 144
if __name__ == "__main__":
    unittest.main()