test_mse_loss.py 12.3 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
19
import paddle
R
ruri 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
import paddle.fluid.core as core
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.executor import Executor


class TestMseLoss(unittest.TestCase):
    def test_mse_loss(self):
        input_val = np.random.uniform(0.1, 0.5, (2, 3)).astype("float32")
        label_val = np.random.uniform(0.1, 0.5, (2, 3)).astype("float32")

        sub = input_val - label_val
        np_result = np.mean(sub * sub)

        input_var = layers.create_tensor(dtype="float32", name="input")
        label_var = layers.create_tensor(dtype="float32", name="label")

        output = layers.mse_loss(input=input_var, label=label_var)
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = Executor(place)
            result = exe.run(fluid.default_main_program(),
43 44
                             feed={"input": input_val,
                                   "label": label_val},
R
ruri 已提交
45 46 47 48 49
                             fetch_list=[output])

            self.assertTrue(np.isclose(np_result, result).all())


50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
class TestMseInvalidInput(unittest.TestCase):
    def test_error(self):
        def test_invalid_input():
            input = [256, 3]
            label = fluid.data(name='label', shape=[None, 3], dtype='float32')
            loss = fluid.layers.mse_loss(input, label)

        self.assertRaises(TypeError, test_invalid_input)

        def test_invalid_label():
            input = fluid.data(name='input1', shape=[None, 3], dtype='float32')
            label = [256, 3]
            loss = fluid.layers.mse_loss(input, label)

        self.assertRaises(TypeError, test_invalid_label)


67 68 69 70 71
class TestNNMseLoss(unittest.TestCase):
    def test_NNMseLoss_mean(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
72
            paddle.enable_static()
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
            prog = fluid.Program()
            startup_prog = fluid.Program()
            place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            with fluid.program_guard(prog, startup_prog):
                input = fluid.layers.data(
                    name='input', shape=dim, dtype='float32')
                label = fluid.layers.data(
                    name='label', shape=dim, dtype='float32')
                mse_loss = paddle.nn.loss.MSELoss()
                ret = mse_loss(input, label)

                exe = fluid.Executor(place)
                static_result = exe.run(
                    prog,
                    feed={"input": input_np,
                          "label": label_np},
                    fetch_list=[ret])

            with fluid.dygraph.guard():
                mse_loss = paddle.nn.loss.MSELoss()
                dy_ret = mse_loss(
                    fluid.dygraph.to_variable(input_np),
                    fluid.dygraph.to_variable(label_np))
                dy_result = dy_ret.numpy()

            sub = input_np - label_np
            expected = np.mean(sub * sub)
            self.assertTrue(np.allclose(static_result, expected))
            self.assertTrue(np.allclose(static_result, dy_result))
            self.assertTrue(np.allclose(dy_result, expected))
            self.assertTrue(dy_result.shape, [1])

    def test_NNMseLoss_sum(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
110
            paddle.enable_static()
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
            prog = fluid.Program()
            startup_prog = fluid.Program()
            place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            with fluid.program_guard(prog, startup_prog):
                input = fluid.layers.data(
                    name='input', shape=dim, dtype='float32')
                label = fluid.layers.data(
                    name='label', shape=dim, dtype='float32')
                mse_loss = paddle.nn.loss.MSELoss(reduction='sum')
                ret = mse_loss(input, label)

                exe = fluid.Executor(place)
                static_result = exe.run(
                    prog,
                    feed={"input": input_np,
                          "label": label_np},
                    fetch_list=[ret])

            with fluid.dygraph.guard():
                mse_loss = paddle.nn.loss.MSELoss(reduction='sum')
                dy_ret = mse_loss(
                    fluid.dygraph.to_variable(input_np),
                    fluid.dygraph.to_variable(label_np))
                dy_result = dy_ret.numpy()

            sub = input_np - label_np
            expected = np.sum(sub * sub)
            self.assertTrue(np.allclose(static_result, expected))
            self.assertTrue(np.allclose(static_result, dy_result))
            self.assertTrue(np.allclose(dy_result, expected))
            self.assertTrue(dy_result.shape, [1])

    def test_NNMseLoss_none(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            label_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
148
            paddle.enable_static()
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
            prog = fluid.Program()
            startup_prog = fluid.Program()
            place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            with fluid.program_guard(prog, startup_prog):
                input = fluid.layers.data(
                    name='input', shape=dim, dtype='float32')
                label = fluid.layers.data(
                    name='label', shape=dim, dtype='float32')
                mse_loss = paddle.nn.loss.MSELoss(reduction='none')
                ret = mse_loss(input, label)

                exe = fluid.Executor(place)
                static_result = exe.run(
                    prog,
                    feed={"input": input_np,
                          "label": label_np},
                    fetch_list=[ret])

            with fluid.dygraph.guard():
                mse_loss = paddle.nn.loss.MSELoss(reduction='none')
                dy_ret = mse_loss(
                    fluid.dygraph.to_variable(input_np),
                    fluid.dygraph.to_variable(label_np))
                dy_result = dy_ret.numpy()

            sub = input_np - label_np
            expected = (sub * sub)
            self.assertTrue(np.allclose(static_result, expected))
            self.assertTrue(np.allclose(static_result, dy_result))
            self.assertTrue(np.allclose(dy_result, expected))
            self.assertTrue(dy_result.shape, [1])


183 184 185 186 187 188 189 190 191 192 193
class TestNNFunctionalMseLoss(unittest.TestCase):
    def test_NNFunctionalMseLoss_mean(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            paddle.enable_static()
            prog = paddle.static.Program()
            startup_prog = paddle.static.Program()
            place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else paddle.CPUPlace()
            with paddle.static.program_guard(prog, startup_prog):
194 195
                input = paddle.fluid.data(name='input', shape=dim, dtype='float32')
                target = paddle.fluid.data(name='target', shape=dim, dtype='float32')
196 197 198 199 200 201 202 203 204 205 206 207
                mse_loss = paddle.nn.functional.mse_loss(input, target, 'mean')

            exe = paddle.static.Executor(place)
            exe.run(startup_prog)
            static_result = exe.run(
                prog,
                feed={"input": input_np,
                      "target": target_np},
                fetch_list=[mse_loss])

            paddle.disable_static()
            dy_ret = paddle.nn.functional.mse_loss(
208
                paddle.to_tensor(input_np), paddle.to_tensor(target_np), 'mean')
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            dy_result = dy_ret.numpy()

            sub = input_np - target_np
            expected = np.mean(sub * sub)
            self.assertTrue(np.allclose(static_result, expected))
            self.assertTrue(np.allclose(static_result, dy_result))
            self.assertTrue(np.allclose(dy_result, expected))
            self.assertTrue(dy_result.shape, [1])

    def test_NNFunctionalMseLoss_sum(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            paddle.enable_static()
            prog = paddle.static.Program()
            startup_prog = paddle.static.Program()
            place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else paddle.CPUPlace()
            with paddle.static.program_guard(prog, startup_prog):
228 229
                input = paddle.fluid.data(name='input', shape=dim, dtype='float32')
                target = paddle.fluid.data(name='target', shape=dim, dtype='float32')
230 231 232 233 234 235 236 237 238 239 240 241
                mse_loss = paddle.nn.functional.mse_loss(input, target, 'sum')

                exe = paddle.static.Executor(place)
                exe.run(startup_prog)
                static_result = exe.run(
                    prog,
                    feed={"input": input_np,
                          "target": target_np},
                    fetch_list=[mse_loss])

            paddle.disable_static()
            dy_ret = paddle.nn.functional.mse_loss(
242
                paddle.to_tensor(input_np), paddle.to_tensor(target_np), 'sum')
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
            dy_result = dy_ret.numpy()

            sub = input_np - target_np
            expected = np.sum(sub * sub)
            self.assertTrue(np.allclose(static_result, expected))
            self.assertTrue(np.allclose(static_result, dy_result))
            self.assertTrue(np.allclose(dy_result, expected))
            self.assertTrue(dy_result.shape, [1])

    def test_NNFunctionalMseLoss_none(self):
        for dim in [[10, 10], [2, 10, 10], [3, 3, 10, 10]]:
            input_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            target_np = np.random.uniform(0.1, 0.5, dim).astype("float32")
            paddle.enable_static()
            prog = paddle.static.Program()
            startup_prog = paddle.static.Program()
            place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else paddle.CPUPlace()
            with paddle.static.program_guard(prog, startup_prog):
262 263
                input = paddle.fluid.data(name='input', shape=dim, dtype='float32')
                target = paddle.fluid.data(name='target', shape=dim, dtype='float32')
264 265 266 267 268 269 270 271 272 273 274 275
                mse_loss = paddle.nn.functional.mse_loss(input, target, 'none')

                exe = paddle.static.Executor(place)
                exe.run(startup_prog)
                static_result = exe.run(
                    prog,
                    feed={"input": input_np,
                          "target": target_np},
                    fetch_list=[mse_loss])

            paddle.disable_static()
            dy_ret = paddle.nn.functional.mse_loss(
276
                paddle.to_tensor(input_np), paddle.to_tensor(target_np), 'none')
277 278 279 280 281 282 283 284 285 286
            dy_result = dy_ret.numpy()

            sub = input_np - target_np
            expected = sub * sub
            self.assertTrue(np.allclose(static_result, expected))
            self.assertTrue(np.allclose(static_result, dy_result))
            self.assertTrue(np.allclose(dy_result, expected))
            self.assertTrue(dy_result.shape, [1])


R
ruri 已提交
287 288
if __name__ == "__main__":
    unittest.main()