node.py 19.0 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
"""Defination of Server and Worker."""
D
dongdaxiang 已提交
14

15
from . import ps_pb2 as pslib
D
dongdaxiang 已提交
16 17 18 19


class Server(object):
    """
20 21
        A Server basic class
        it's a base class, does not have implementation
D
dongdaxiang 已提交
22 23 24 25 26 27 28 29 30
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
31
        it's a base class, does not have implementation
D
dongdaxiang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
D
dongdaxiang 已提交
48 49 50 51 52 53
        self._server = pslib.ServerParameter()
        self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_thread_num = 12
D
dongdaxiang 已提交
54

55
    def add_sparse_table(self, table_id, strategy):
D
dongdaxiang 已提交
56 57 58
        """
        Args:
            table_id(int): id of sparse params table
59
            strategy(dict): the config dict.
D
dongdaxiang 已提交
60 61 62
        Returns:
            return None 
        """
63

64 65 66 67 68 69 70
        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_SPARSE_TABLE:
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_SPARSE_TABLE, table.type))
71 72
        if strategy is None:
            strategy = dict()
D
dongdaxiang 已提交
73
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
74 75
        table.table_id = table_id
        table.type = pslib.PS_SPARSE_TABLE
76 77 78 79 80

        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                    'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                    'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                    'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
81 82
                    'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
                    'sparse_converter', 'sparse_deconverter']
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

        for key in strategy:
            if key not in support_sparse_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        support_table_calss = ['DownpourSparseTable']
        if strategy.get('sparse_table_class') is not None:
            table_class = strategy.get('sparse_table_class')
            if table_class not in support_table_calss:
                raise ValueError(
                    "support sparse_table_class: [ 'DownpourSparseTable' ], \
                        but actual %s" % (table_class))
        else:
            table_class = 'DownpourSparseTable'

        table.table_class = table_class

        if table_class == 'DownpourSparseTable':
            table.compress_in_save = strategy.get('sparse_compress_in_save',
                                                  True)
            table.shard_num = strategy.get('sparse_shard_num', 1000)

            support_accessor_class = [
                'DownpourFeatureValueAccessor', 'DownpourCtrAccessor'
            ]
            if strategy.get('sparse_accessor_class') is not None:
                accessor_class = strategy.get('sparse_accessor_class')
                if accessor_class not in support_accessor_class:
                    raise ValueError(
                        "support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor'], \
                            but actual %s" % (accessor_class))
            else:
                accessor_class = 'DownpourCtrAccessor'

            table.accessor.accessor_class = accessor_class

            if accessor_class == 'DownpourFeatureValueAccessor' or accessor_class == 'DownpourCtrAccessor':
                table.accessor.sparse_sgd_param.learning_rate = strategy.get(
                    'sparse_learning_rate', 0.05)
                table.accessor.sparse_sgd_param.initial_g2sum = strategy.get(
                    'sparse_initial_g2sum', 3)
                table.accessor.sparse_sgd_param.initial_range = strategy.get(
                    'sparse_initial_range', 1e-4)
                if strategy.get('sparse_weight_bounds') is None:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        [-10, 10])
                else:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        strategy.get('sparse_weight_bounds'))
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.embedx_threshold = strategy.get(
                    'sparse_embedx_threshold', 10)
                table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
                table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
                    'sparse_nonclk_coeff', 0.1)
                table.accessor.downpour_accessor_param.click_coeff = strategy.get(
                    'sparse_click_coeff', 1)
                table.accessor.downpour_accessor_param.base_threshold = strategy.get(
                    'sparse_base_threshold', 1.5)
                table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
                    'sparse_delta_threshold', 0.25)
                table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
                    'sparse_delta_keep_days', 16)
                table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
                    'sparse_delete_after_unseen_days', 30)
                table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
                    'sparse_show_click_decay_rate', 0.98)
                table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
                    'sparse_delete_threshold', 0.8)
152 153 154 155 156 157 158 159
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

160 161
                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
162 163 164
                table1.converter = converter
                table1.deconverter = deconverter

165 166
                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
167 168
                table2.converter = converter
                table2.deconverter = deconverter
169

170
    def add_dense_table(self, table_id, param_var, grad_var, strategy,
171
                        sparse_table_names):
D
dongdaxiang 已提交
172 173 174
        """
        Args:
            table_id(int): id of sparse params table
175 176 177 178
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the dense config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
179 180 181
        Returns:
            return None 
        """
182
        fea_dim = 0
183 184
        dense_param_vars = []
        for p in param_var:
185
            if p.name not in sparse_table_names:
186 187 188
                dense_param_vars.append(p)

        for param in dense_param_vars:
189 190 191 192 193 194 195 196 197 198
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
199 200 201

        if strategy is None:
            strategy = dict()
T
tangwei12 已提交
202
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
203
        table.table_id = table_id
204 205 206 207 208 209 210 211 212 213
        support_dense_key_list = ['dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', \
                'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', \
                'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr']

        for key in strategy:
            if key not in support_dense_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        table.table_class = strategy.get('dense_table_class',
                                         "DownpourDenseTable")
D
dongdaxiang 已提交
214
        table.type = pslib.PS_DENSE_TABLE
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        table.compress_in_save = strategy.get('dense_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
            'dense_accessor_class', "DownpourDenseValueAccessor")
        table.accessor.dense_sgd_param.name = strategy.get('dense_optimizer',
                                                           "adam")
        table.accessor.dense_sgd_param.adam.learning_rate = strategy.get(
            'dense_learning_rate', 5e-06)
        table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get(
            'dense_avg_decay', 0.999993)
        table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get(
            'dense_ada_decay', 0.9999)
        table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get(
            'dense_ada_epsilon', 1e-8)
        table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get(
            'dense_mom_decay', 0.99)
        table.accessor.dense_sgd_param.naive.learning_rate = strategy.get(
            'dense_naive_lr', 0.0002)
D
dongdaxiang 已提交
232 233
        table.accessor.fea_dim = fea_dim

234
    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var,
235
                            strategy, sparse_table_names):
D
dongdaxiang 已提交
236 237
        """
        Args:
238
            table_id(int): id of datanorm table
239 240 241 242 243
            learning_rate(float): the learning rate used to update parameters
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the datanorm config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
244 245 246
        Returns:
            return None 
        """
247
        fea_dim = 0
248 249
        dense_param_vars = []
        for p in param_var:
250
            if p.name not in sparse_table_names:
251 252 253
                dense_param_vars.append(p)

        for param in dense_param_vars:
254 255 256 257 258 259 260 261 262 263
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
264 265 266 267 268 269 270 271 272 273
        if strategy is None:
            strategy = dict()

        support_datanorm_key_list = ['datanorm_table_class', 'datanorm_compress_in_save',\
                'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate']

        for key in strategy:
            if key not in support_datanorm_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

D
dongdaxiang 已提交
274
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
275
        table.table_id = table_id
276
        table.table_class = strategy.get('datanorm_table_class',
277
                                         'DownpourDenseTable')
D
dongdaxiang 已提交
278
        table.type = pslib.PS_DENSE_TABLE
279 280
        table.compress_in_save = strategy.get('datanorm_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
281
            'datanorm_accessor_class', 'DownpourDenseValueAccessor')
282
        table.accessor.dense_sgd_param.name = strategy.get('datanorm_operation',
283
                                                           'summary')
284 285
        table.accessor.dense_sgd_param.summary.summary_decay_rate = strategy.get(
            'datanorm_decay_rate', 0.999999)
D
dongdaxiang 已提交
286 287 288 289 290 291
        table.accessor.fea_dim = fea_dim

    def get_desc(self):
        """
        Return downpour server program_desc
        """
D
dongdaxiang 已提交
292
        return self._server
D
dongdaxiang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
D
dongdaxiang 已提交
307
        self._worker = pslib.DownpourTrainerParameter()
D
dongdaxiang 已提交
308

309 310 311 312 313
    def add_sparse_table(self,
                         table_id,
                         slot_key_vars,
                         slot_value_vars,
                         slot_value_grads=None):
D
dongdaxiang 已提交
314 315 316
        """
        Args:
            table_id(int): id of sparse params table
317 318 319 320
            slot_key_vars(list): slot key id
            slot_value_vars(list): slot key value after embedding
            slot_value_grads(list): grad of all params, default is None

D
dongdaxiang 已提交
321 322 323
        Returns:
            return None 
        """
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        if slot_value_grads is None:
            slot_value_grad_names = \
                [var.name + "@GRAD" for var in slot_value_vars]
        else:
            value_to_key = {}
            for i in range(len(slot_key_vars)):
                value_to_key[slot_value_vars[i].name] = slot_key_vars[i]
            slot_value_grad_names = []
            all_grad_names = [var.name for var in slot_value_grads]
            for var in slot_value_vars:
                if var.name + "@GRAD" in all_grad_names:
                    slot_value_grad_names.append(var.name + "@GRAD")
            sorted_slot_value_vars = [i for i in slot_value_vars if \
                i.name + "@GRAD" in slot_value_grad_names]
            sorted_slot_value_vars += [i for i in slot_value_vars if \
                i.name + "@GRAD" not in slot_value_grad_names]
            sorted_slot_key_vars = \
                [value_to_key[v.name] for v in sorted_slot_value_vars]

        target_table = None
344 345
        for table in self._worker.sparse_table:
            if table.table_id == table_id:
X
xujiaqi01 已提交
346
                keys = table.slot_key
347 348 349 350
                key_names = [var.name for var in sorted_slot_key_vars]
                for key_name in key_names:
                    if key_name not in keys:
                        raise ValueError("sparse table %s slot_key error" %
351
                                         table_id)
352 353
                target_table = table
                break
354

355 356 357
        table = target_table
        if table is not None:
            self._worker.sparse_table.remove(table)
T
tangwei12 已提交
358
        table = self._worker.sparse_table.add()
D
dongdaxiang 已提交
359
        table.table_id = table_id
360 361 362
        table.slot_key.extend([var.name for var in sorted_slot_key_vars])
        table.slot_value.extend([var.name for var in sorted_slot_value_vars])
        table.slot_gradient.extend(slot_value_grad_names)
D
dongdaxiang 已提交
363

364
    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars,
365
                        dense_start_table_id, sparse_table_names):
D
dongdaxiang 已提交
366 367 368 369 370
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
371 372 373 374
            param_vars(list): all dense param. it is a list.
            grad_vars(list): all dense grad parm it is a list.
            dense_start_table_id(int): dense table start index
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
375 376 377
        Returns:
            return None 
        """
378
        sparse_table_name_grad = []
379
        for name in sparse_table_names:
380 381 382 383
            sparse_table_name_grad.append(name + "@GRAD")

        dense_param_name = []
        for p in param_vars:
384
            if p.name not in sparse_table_names:
385 386 387 388 389 390 391 392 393
                dense_param_name.append(p.name)

        dense_grad_name = []
        for g in grad_vars:
            if g.name not in sparse_table_name_grad:
                dense_grad_name.append(g.name)

        dense_param_name.sort()
        dense_grad_name.sort()
394

395 396
        for table in self._worker.dense_table:
            if table.table_id == table_id:
397
                desc_dense_param_name = list(table.dense_variable_name)
398 399 400
                desc_dense_param_name.sort()

                if dense_param_name == desc_dense_param_name:
401 402
                    desc_dense_grad_name = list(
                        table.dense_gradient_variable_name)
403 404
                    desc_dense_grad_name.sort()
                    if dense_grad_name == desc_dense_grad_name:
405 406 407
                        return
                    else:
                        raise ValueError(
408 409
                            "dense table %s dense_gradient_variable_name "
                            "error" % table_id)
410 411 412 413
                else:
                    raise ValueError(
                        "dense table %s dense_variable_name error" % table_id)

D
dongdaxiang 已提交
414
        table = self._worker.dense_table.add()
D
dongdaxiang 已提交
415
        table.table_id = table_id
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        #def cmp_fc(x, y):
        #    if x.startswith("fc_") and y.startswith("fc_"):
        #        index_x = x.find('.')
        #        index_y = y.find('.')
        #        if index_x > 0 and index_y > 0:
        #            num_x = x[3:index_x]
        #            num_y = y[3:index_y]
        #            if num_x.isdigit() and num_y.isdigit():
        #                if int(num_x) < int(num_y):
        #                    return -1
        #                if int(num_x) > int(num_y):
        #                    return 1
        #                if x[index_x + 1] == 'w' and y[index_y + 1] == 'b':
        #                    return -1
        #                if x[index_x + 1] == 'b' and y[index_y + 1] == 'w':
        #                    return 1
        #    if x < y:
        #        return -1
        #    else:
        #        return 1

        #table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc))
        #table.dense_gradient_variable_name.extend(
        #    sorted(dense_grad_name, cmp_fc))
        table.dense_variable_name.extend(dense_param_name)
        table.dense_gradient_variable_name.extend(dense_grad_name)
D
dongdaxiang 已提交
443 444 445 446 447

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
D
dongdaxiang 已提交
448
        return self._worker