learning_rate_decay.py 7.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import layers
from framework import Variable
17
from initializer import init_on_cpu
Q
Qiao Longfei 已提交
18

19 20 21 22
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
    'polynomial_decay', 'piecewise_decay'
]
Q
Qiao Longfei 已提交
23 24 25 26 27 28 29 30 31 32
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""


Y
Yu Yang 已提交
33 34
def float_global_step():
    # the first global step is zero in learning rate decay
Y
Yu Yang 已提交
35 36
    global_step = layers.autoincreased_step_counter(
        counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
37 38 39 40 41
    global_step = layers.cast(global_step, 'float32')
    return global_step


def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    """Applies exponential decay to the learning rate.

    ```python
    decayed_learning_rate = learning_rate *
            decay_rate ^ (global_step / decay_steps)
    ```
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
58
    global_step = float_global_step()
Q
Qiao Longfei 已提交
59

60 61 62 63 64 65 66 67
    with init_on_cpu():
        # update learning_rate
        div_res = global_step / decay_steps
        if staircase:
            div_res = layers.floor(x=div_res)
        decayed_lr = learning_rate * (decay_rate**div_res)

    return decayed_lr
Q
Qiao Longfei 已提交
68 69


Y
Yu Yang 已提交
70
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
71 72
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
73 74 75 76 77
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
78 79 80 81 82 83 84 85 86 87
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
88
    global_step = float_global_step()
Q
Qiao Longfei 已提交
89

90 91 92 93 94 95 96
    with init_on_cpu():
        div_res = global_step / decay_steps
        if staircase:
            div_res = layers.floor(x=div_res)
        decayed_lr = learning_rate * layers.exp(x=(-1 * decay_rate * div_res))

    return decayed_lr
Q
Qiao Longfei 已提交
97 98


Y
Yu Yang 已提交
99
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
100 101
    """Applies inverse time decay to the initial learning rate.

Y
Yu Yang 已提交
102 103 104 105 106
    >>> if staircase:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
107 108
    Args:
        learning_rate: A scalar float32 value or a Variable. This
Y
Yu Yang 已提交
109
          will be the initial learning rate during training.
Q
Qiao Longfei 已提交
110 111 112 113 114 115 116
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
117
    global_step = float_global_step()
Q
Qiao Longfei 已提交
118

119 120 121 122 123 124
    with init_on_cpu():
        div_res = global_step / decay_steps
        if staircase:
            div_res = layers.floor(x=div_res)

        decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
125

126
    return decayed_lr
127 128 129 130 131 132 133 134 135


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
    """Applies polynomial decay to the initial learning rate.

Y
Yu Yang 已提交
136 137 138 139 140 141 142
    >>> if cycle:
    >>>     decay_steps = decay_steps * ceil(global_step / decay_steps)
    >>> else:
    >>>     global_step = min(global_step, decay_steps)
    >>> decayed_learning_rate = (learning_rate - end_learning_rate) *
    >>>                   (1 - global_step / decay_steps) ^ power +
    >>>                   end_learning_rate
143 144 145 146 147 148 149 150 151 152 153
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        end_learning_rate: A Python `float` number.
        power: A Python `float` number
        cycle: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
154
    global_step = float_global_step()
155

156 157 158 159 160 161 162 163 164
    with init_on_cpu():
        if cycle:
            div_res = layers.ceil(x=(global_step / decay_steps))
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            with layers.Switch() as switch:
165
                with switch.case(global_step == zero_var):
166 167 168 169 170 171 172 173 174 175 176
                    layers.assign(input=one_var, output=div_res)
            decay_steps = decay_steps * div_res
        else:
            decay_steps_var = layers.fill_constant(
                shape=[1], dtype='float32', value=float(decay_steps))
            global_step = layers.elementwise_min(
                x=global_step, y=decay_steps_var)

        decayed_lr = (learning_rate - end_learning_rate) * \
                     ((1 - global_step / decay_steps) ** power) + end_learning_rate
    return decayed_lr
177 178


Y
Yu Yang 已提交
179
def piecewise_decay(boundaries, values):
180 181
    """Applies piecewise decay to the initial learning rate.

Y
Yu Yang 已提交
182 183 184 185 186 187 188 189 190
    >>> boundaries = [10000, 20000]
    >>> values = [1.0, 0.5, 0.1]
    >>>
    >>> if step < 10000:
    >>>     learning_rate = 1.0
    >>> elif 10000 <= step < 20000:
    >>>     learning_rate = 0.5
    >>> else:
    >>>     learning_rate = 0.1
191 192 193 194 195
    """

    if len(values) - len(boundaries) != 1:
        raise ValueError("len(values) - len(boundaries) should be 1")

Y
Yu Yang 已提交
196
    global_step = float_global_step()
197

198 199 200 201 202 203 204 205 206 207 208 209 210 211
    with init_on_cpu():
        lr = layers.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")

        with layers.Switch() as switch:
            for i in range(len(boundaries)):
                boundary_val = layers.fill_constant(
                    shape=[1], dtype='float32', value=float(boundaries[i]))
                value_var = layers.fill_constant(
                    shape=[1], dtype='float32', value=float(values[i]))
212
                with switch.case(global_step < boundary_val):
213 214 215 216 217 218 219
                    layers.assign(value_var, lr)
            last_value_var = layers.fill_constant(
                shape=[1],
                dtype='float32',
                value=float(values[len(values) - 1]))
            with switch.default():
                layers.assign(last_value_var, lr)
220 221

    return lr