lrn_mkldnn_op.cc 6.3 KB
Newer Older
T
Tomasz Patejko 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/lrn_op.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
T
Tomasz Patejko 已提交
18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

template <typename T>
class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
minqiyang 已提交
29
    const bool is_float_type = std::is_same<T, float>::value;
30 31 32 33 34 35
    PADDLE_ENFORCE_EQ(
        is_float_type, true,
        platform::errors::PreconditionNotMet("DNNL LRN must use float data."));
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL LRN must use CPUPlace"));
T
Tomasz Patejko 已提交
36 37 38 39 40 41 42
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

    auto x = ctx.Input<Tensor>("X");
    auto out = ctx.Output<Tensor>("Out");
    auto mid = ctx.Output<Tensor>("MidOut");

    const int n = ctx.Attr<int>("n");
43 44 45 46 47 48
    // MKL-DNN implements LRN in a caffe way:
    // http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
    // Where sum of squares is divided by size of normalization window
    // this is not the case for PaddlePaddle LRN.
    // Hence we need to compensate for this diffrence by
    // multipliing alpha by size of window(n)
49
    const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
T
Tomasz Patejko 已提交
50 51
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");
J
Jacek Czaja 已提交
52
    bool is_test = ctx.Attr<bool>("is_test");
T
Tomasz Patejko 已提交
53

A
Adam 已提交
54
    auto dims = paddle::framework::vectorize<int64_t>(x->dims());
55

J
Jacek Czaja 已提交
56 57
    platform::LRNMKLDNNHandler<T> handler(dims, n, alpha, beta, k, x->format(),
                                          is_test, dev_ctx, ctx.GetPlace(),
H
hong 已提交
58
                                          ctx.OutputName("Out"));
J
Jacek Czaja 已提交
59 60 61 62

    auto src_memory = handler.AcquireSrcMemory(x);
    auto dst_memory = handler.AcquireDstMemory(out);

A
Adam 已提交
63 64 65 66 67 68 69
    auto lrn_p = handler.AcquireForwardPrimitive();

    auto workspace_memory = handler.AcquireWorkspaceMemory(mid);
    mid->set_layout(framework::DataLayout::kMKLDNN);

    mkldnn::stream astream(dev_ctx.GetEngine());
    if (!workspace_memory->get_desc().is_zero()) {
70
      mid->set_format(platform::GetMKLDNNFormat(*workspace_memory));
A
Adam 已提交
71 72 73
      lrn_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                               {MKLDNN_ARG_DST, *dst_memory},
                               {MKLDNN_ARG_WORKSPACE, *workspace_memory}});
J
Jacek Czaja 已提交
74 75 76 77 78 79 80
    } else {
      // mid has to be allocated and filled
      // k to pass LRN unit tests
      // TODO(jczaja): Disable checking mid in unit tests (Require API change)
      mid->mutable_data<T>(ctx.GetPlace());
      auto e_mid = framework::EigenTensor<T, 4>::From(*mid);
      e_mid = e_mid.constant(k);
A
Adam 已提交
81
      mid->set_format(platform::GetMKLDNNFormat(*dst_memory));
82

A
Adam 已提交
83 84 85 86
      lrn_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                               {MKLDNN_ARG_DST, *dst_memory}});
    }
    astream.wait();
87 88

    out->set_layout(framework::DataLayout::kMKLDNN);
A
Adam 已提交
89
    out->set_format(platform::GetMKLDNNFormat(*dst_memory));
T
Tomasz Patejko 已提交
90 91 92 93 94 95 96
  }
};

template <typename T>
class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
minqiyang 已提交
97
    const bool is_float_type = std::is_same<T, float>::value;
98 99 100 101 102 103 104 105 106 107
    PADDLE_ENFORCE_EQ(is_float_type, true,
                      platform::errors::PreconditionNotMet(
                          "DNNL LRN GradOpKernl must use float data."));
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL LRNGrad must use CPUPlace"));
    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
        platform::errors::PreconditionNotMet(
            "is_test attribute should be set to False in training phase."));
T
Tomasz Patejko 已提交
108 109

    auto x = ctx.Input<Tensor>("X");
J
Jacek Czaja 已提交
110
    auto mid = ctx.Input<Tensor>("MidOut");
T
Tomasz Patejko 已提交
111 112 113 114 115

    auto out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    const int n = ctx.Attr<int>("n");
116
    const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
T
Tomasz Patejko 已提交
117 118 119 120 121
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

A
Adam 已提交
122
    auto dims = paddle::framework::vectorize<int64_t>(x->dims());
T
Tomasz Patejko 已提交
123

H
hong 已提交
124 125 126
    platform::LRNMKLDNNHandler<T> handler(dims, n, alpha, beta, k, x->format(),
                                          out_grad->format(), dev_ctx,
                                          ctx.GetPlace(), ctx.InputName("Out"));
T
Tomasz Patejko 已提交
127

J
Jacek Czaja 已提交
128 129 130 131
    auto src_memory = handler.AcquireSrcMemory(x);
    auto workspace = handler.AcquireBackwardWorkspaceMemory(mid);
    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(x_grad);
T
Tomasz Patejko 已提交
132

A
Adam 已提交
133
    auto lrn_bwd = handler.AcquireBackwardPrimitive();
T
Tomasz Patejko 已提交
134

A
Adam 已提交
135 136 137 138 139 140
    mkldnn::stream astream(dev_ctx.GetEngine());
    lrn_bwd->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                               {MKLDNN_ARG_DIFF_DST, *diff_dst_memory},
                               {MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
                               {MKLDNN_ARG_WORKSPACE, *workspace}});
    astream.wait();
141 142

    x_grad->set_layout(framework::DataLayout::kMKLDNN);
A
Adam 已提交
143
    x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
T
Tomasz Patejko 已提交
144 145 146 147 148 149 150 151 152 153 154
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(lrn, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(lrn_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNGradOpKernel<float>);