sampling_id_op.h 2.5 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License. */

#pragma once

#include <algorithm>
#include <iostream>
#include <iterator>
#include <random>
#include <sstream>
#include <vector>

#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
class SamplingIdKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("X");
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int width = static_cast<int>(input->dims()[1]);

    PADDLE_ENFORCE_GE(batch_size, 0,
                      "batch_size(dims[0]) must be nonnegative.");
    PADDLE_ENFORCE_GE(width, 0, "width(dims[1]) must be nonnegative.");

    std::vector<T> ins_vector;
    framework::TensorToVector(*input, context.device_context(), &ins_vector);

    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(
        static_cast<T>(context.Attr<float>("min")),
        static_cast<T>(context.Attr<float>("max")));

    std::vector<T> ids(batch_size);
57
    for (int i = 0; i < batch_size; ++i) {
T
tangwei12 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
      T r = dist(engine);
      int idx = width - 1;
      for (int j = 0; j < width; ++j) {
        if ((r -= ins_vector[i * width + j]) < 0) {
          idx = j;
          break;
        }
      }
      ids[i] = ins_vector[i * width + idx];
    }

    std::vector<int64_t> out_dim;
    out_dim.push_back(static_cast<int64_t>(batch_size));

    Tensor* output = context.Output<Tensor>("Out");
    output->Resize(framework::make_ddim(out_dim));
    output->mutable_data<T>(context.GetPlace());
    framework::TensorFromVector(ids, context.device_context(), output);
  }
};

}  // namespace operators
}  // namespace paddle