mnist.py 7.7 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import argparse
import time

import paddle.v2 as paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler

SEED = 1
DTYPE = "float32"

# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED


def parse_args():
    parser = argparse.ArgumentParser("mnist model benchmark.")
    parser.add_argument(
        '--batch_size', type=int, default=128, help='The minibatch size.')
D
dzhwinter 已提交
38 39 40 41 42 43
    parser.add_argument(
        '--skip_batch_num',
        type=int,
        default=5,
        help='The first num of minibatch num to skip, for better performance test'
    )
D
dzhwinter 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    parser.add_argument(
        '--iterations', type=int, default=35, help='The number of minibatches.')
    parser.add_argument(
        '--pass_num', type=int, default=5, help='The number of passes.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help='The device type.')
    parser.add_argument(
        '--infer_only', action='store_true', help='If set, run forward only.')
    parser.add_argument(
        '--use_cprof', action='store_true', help='If set, use cProfile.')
    parser.add_argument(
        '--use_nvprof',
        action='store_true',
        help='If set, use nvprof for CUDA.')
D
dzhwinter 已提交
62 63 64 65
    parser.add_argument(
        '--with_test',
        action='store_true',
        help='If set, test the testset during training.')
D
dzhwinter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    args = parser.parse_args()
    return args


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale)))
    return predict


def eval_test(exe, batch_acc, batch_size_tensor, inference_program):
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=args.batch_size)
    test_pass_acc = fluid.average.WeightedAverage()
    for batch_id, data in enumerate(test_reader()):
        img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]),
                                data)).astype(DTYPE)
        y_data = np.array(map(lambda x: x[1], data)).astype("int64")
        y_data = y_data.reshape([len(y_data), 1])

        acc, weight = exe.run(inference_program,
                              feed={"pixel": img_data,
                                    "label": y_data},
                              fetch_list=[batch_acc, batch_size_tensor])
        test_pass_acc.add(value=acc, weight=weight)
        pass_acc = test_pass_acc.eval()
    return pass_acc


def run_benchmark(model, args):
    if args.use_cprof:
        pr = cProfile.Profile()
        pr.enable()
    start_time = time.time()
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size_tensor)

    # inference program
    inference_program = fluid.default_main_program().clone()

    # Optimization
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999)
    opt.minimize(avg_cost)

    fluid.memory_optimize(fluid.default_main_program())

    # Initialize executor
    place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
    exe = fluid.Executor(place)

    # Parameter initialization
    exe.run(fluid.default_startup_program())

    # Reader
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=args.batch_size)

D
dzhwinter 已提交
161
    accuracy = fluid.metrics.Accuracy()
D
dzhwinter 已提交
162
    iters, num_samples, start_time = 0, 0, time.time()
D
dzhwinter 已提交
163 164
    for pass_id in range(args.pass_num):
        accuracy.reset()
D
dzhwinter 已提交
165 166
        train_accs = []
        train_losses = []
D
dzhwinter 已提交
167
        for batch_id, data in enumerate(train_reader()):
D
dzhwinter 已提交
168 169 170 171 172
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            if iters == args.iterations:
                break
D
dzhwinter 已提交
173 174 175 176 177 178 179 180 181 182 183
            img_data = np.array(
                map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE)
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([len(y_data), 1])

            outs = exe.run(
                fluid.default_main_program(),
                feed={"pixel": img_data,
                      "label": y_data},
                fetch_list=[avg_cost, batch_acc, batch_size_tensor]
            )  # The accuracy is the accumulation of batches, but not the current batch.
D
dzhwinter 已提交
184
            accuracy.update(value=outs[1], weight=outs[2])
D
dzhwinter 已提交
185 186
            iters += 1
            num_samples += len(y_data)
D
dzhwinter 已提交
187 188
            loss = np.array(outs[0])
            acc = np.array(outs[1])
D
dzhwinter 已提交
189 190 191 192 193 194 195 196 197
            train_losses.append(loss)
            train_accs.append(acc)
            print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
                  (pass_id, iters, loss, acc))

        print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
              (pass_id, np.mean(train_losses), np.mean(train_accs)))
        train_elapsed = time.time() - start_time
        examples_per_sec = num_samples / train_elapsed
D
dzhwinter 已提交
198

D
dzhwinter 已提交
199 200 201 202 203 204 205
        print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
              (num_samples, train_elapsed, examples_per_sec))
        # evaluation
        if args.with_test:
            test_avg_acc = eval_test(exe, batch_acc, batch_size_tensor,
                                     inference_program)
        exit(0)
D
dzhwinter 已提交
206 207


D
dzhwinter 已提交
208 209 210 211 212 213 214
def print_arguments(args):
    vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
                                vars(args)['device'] == 'GPU')
    print('----------- mnist Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')
D
dzhwinter 已提交
215 216 217 218 219 220 221 222 223 224


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    if args.use_nvprof and args.device == 'GPU':
        with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
            run_benchmark(cnn_model, args)
    else:
        run_benchmark(cnn_model, args)