crop_op.cc 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/crop_op.h"
W
wanghaoshuang 已提交
16
#include <boost/lexical_cast.hpp>
W
wanghaoshuang 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;

class CropOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28 29 30 31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of CropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of CropOp should not be null.");
    auto x_dim = ctx->GetInputDim("X");
    if (!ctx->HasInput("Y")) {
      auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
W
wanghaoshuang 已提交
35
      PADDLE_ENFORCE_EQ(
36
          int64_t(shape.size()), x_dim.size(),
W
wanghaoshuang 已提交
37
          "Shape size should be equal to dimention size of input tensor.");
W
wanghaoshuang 已提交
38
      std::vector<int64_t> tensor_shape(shape.size());
39
      for (size_t i = 0; i < shape.size(); ++i) {
40
        tensor_shape[i] = static_cast<int64_t>(shape[i]);
W
wanghaoshuang 已提交
41
      }
Q
Qiao Longfei 已提交
42
      ctx->SetOutputDim("Out", framework::make_ddim(tensor_shape));
W
wanghaoshuang 已提交
43
    } else {
Q
Qiao Longfei 已提交
44 45
      auto y_dim = ctx->GetInputDim("Y");
      PADDLE_ENFORCE_EQ(framework::arity(x_dim), framework::arity(y_dim),
W
wanghaoshuang 已提交
46 47
                        "Tensor rank of both CropOp's "
                        "inputs must be same.");
Q
Qiao Longfei 已提交
48
      ctx->SetOutputDim("Out", y_dim);
W
wanghaoshuang 已提交
49 50
    }
  }
51 52 53 54 55 56 57

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
W
wanghaoshuang 已提交
58 59 60 61
};

class CropOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
62
  void Make() override {
63 64
    AddInput("X",
             "The input of pad op. "
K
Kexin Zhao 已提交
65
             "The input should be a k-D tensor(k > 0 and k < 7).");
66
    AddInput("Y",
K
Kexin Zhao 已提交
67 68
             "The input used as reference for cropping, "
             "which is of the same dimensions as X.")
Y
Yang Yang(Tony) 已提交
69
        .AsDispensable();
F
stash  
fengjiayi 已提交
70 71 72 73 74
    AddInput("Offsets",
             "The input used to describe offsets in runtime, which is a "
             "1-D vector whose size equals to the rank of input 'X'. The "
             "elements data type must be int.")
        .AsDispensable();
75
    AddOutput("Out",
K
Kexin Zhao 已提交
76 77
              "The output of crop op, "
              "which is of the same dimensions as X.");
78
    AddAttr<std::vector<int>>("offsets",
K
Kexin Zhao 已提交
79 80
                              "A list<int> describing offsets to be cropped. "
                              "The size of offsets list should be the same as "
F
stash  
fengjiayi 已提交
81 82
                              "the dimension size of input X.")
        .SetDefault(std::vector<int>());
83
    AddAttr<std::vector<int>>("shape",
K
Kexin Zhao 已提交
84 85 86
                              "A list<int> describing the shape of output. "
                              "The size of shape list should be the same as "
                              "the dimension size of input X.")
87
        .SetDefault(std::vector<int>());
W
wanghaoshuang 已提交
88 89
    AddComment(R"DOC(
Crop Operator.
K
Kexin Zhao 已提交
90

91 92
Crop input into output, as specified by offsets and shape.

F
stash  
fengjiayi 已提交
93 94 95 96 97 98 99 100 101 102 103
There are two ways to set the offsets:
1. In runtime: Using the input 'Offsets', which is a Vairbale and can be 
               output of other operators. This way is suitable for 
               dynamic offsets.
2. In network configuration: Using the attribute 'offsets', which will be 
                             set in Python configure script. This way is 
                             suitable for fixed offsets.
You CANNOT use these two ways at the same time. An exception will be raised 
if input 'Offset' is configured and meanwhile the attribute 'offsets' is 
not empty.

Q
Qiao Longfei 已提交
104
There are two ways to set shape:
K
Kexin Zhao 已提交
105
1. reference input: crop input X into the same shape as reference input.
Q
Qiao Longfei 已提交
106
                    The dimension of reference input should
K
Kexin Zhao 已提交
107 108 109 110
                    be the same as the dimension of input X.
2. shape list: crop input X into the shape described by a list<int>.
               The size of shape list should be the same as
               the dimension size of input X.
111 112 113

The input should be a k-D tensor(k > 0 and k < 7). As an example:

W
wanghaoshuang 已提交
114 115
Case 1:
Given
116

117 118
    X = [[0, 1, 2, 0, 0]
         [0, 3, 4, 0, 0]
K
Kexin Zhao 已提交
119
         [0, 0, 0, 0, 0]],
120

Q
Qiao Longfei 已提交
121
and
122

K
Kexin Zhao 已提交
123
    offsets = [0, 1],
124 125

and
Q
Qiao Longfei 已提交
126

K
Kexin Zhao 已提交
127
    shape = [2, 2],
128

K
Kexin Zhao 已提交
129
we get:
130

131
    Out = [[1, 2],
K
Kexin Zhao 已提交
132
           [3, 4]].
133

W
wanghaoshuang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

Case 2:
Given

    X = [[0, 1, 2, 5, 0]
         [0, 3, 4, 6, 0]
         [0, 0, 0, 0, 0]],

and

    offsets = [0, 1],

and

    Y = [[0, 0, 0]
         [0, 0, 0]],

we get:

    Out = [[1, 2, 5],
           [3, 4, 6]].
W
wanghaoshuang 已提交
155 156 157 158 159 160 161 162
)DOC");
  }
};

class CropOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

163
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
164 165 166 167 168 169 170
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
171
    }
W
wanghaoshuang 已提交
172
  }
173 174 175 176 177 178 179 180 181

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))
                ->type()),
        ctx.device_context());
  }
W
wanghaoshuang 已提交
182 183 184 185 186 187
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
188 189 190
REGISTER_OPERATOR(crop, ops::CropOp, ops::CropOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(crop_grad, ops::CropOpGrad);
191
REGISTER_OP_CPU_KERNEL(crop, ops::CropKernel<float>);
Q
QI JUN 已提交
192 193
REGISTER_OP_CPU_KERNEL(
    crop_grad, ops::CropGradKernel<paddle::platform::CPUDeviceContext, float>);