fusion_rnn_mkldnn.h 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using paddle::framework::LoDTensor;
using paddle::framework::Tensor;
using paddle::platform::CPUDeviceContext;
using paddle::platform::CreateKey;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::MKLDNNMemDesc;
using platform::to_void_cast;

template <typename T, typename T_alg, typename T_out = T>
class RNNMKLDNNHandler : public platform::MKLDNNHandlerT<T, T_alg> {
 public:
  RNNMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   const mkldnn::engine mkldnn_engine,
                   platform::Place cpu_place, const LoDTensor* input,
                   const Tensor* weight_h, const Tensor* h0,
                   const bool is_reverse, const int64_t N, const int64_t Ti,
                   const int64_t IC, const int64_t OC, const int64_t G,
                   const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, T_alg>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            CreateKey(dev_ctx, unique_name, MKLDNNGetDataType<T>(), Ti)),
        N(N),
        Ti(Ti),
        IC(IC),
        OC(OC),
        G(G) {
    // Create memory key without Ti because weights, bias and h0 memories
    // do not depend on Ti size but primitive and input/output memory do
    memory_key_ = platform::ExtendKeyWithThreadInfoIfNeeded(
        dev_ctx, CreateKey(dev_ctx, unique_name, MKLDNNGetDataType<T>()));

    // Is it int8 kernel
    const bool is_INT8 = std::is_same<T, uint8_t>::value;

    if (is_INT8) {
      // Int8 attributes
      const float scale_data = ctx.Attr<float>("Scale_data");
      const float shift_data = ctx.Attr<float>("Shift_data");
      const auto scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");

      const int weights_scale_mask =
          0 +
          (1 << 3)  // bit, indicating the unique scales for `g` dim in `ldigo`
          +
          (1 << 4);  // bit, indicating the unique scales for `o` dim in `ldigo`

      attr_.set_rnn_data_qparams(scale_data, shift_data);
      attr_.set_rnn_weights_qparams(weights_scale_mask, scale_weights);
    }
  }

  bool is_NTC() {
    return (platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc()) ==
            dnnl::memory::format_tag::ntc);
  }

  void reorderRNNdata(void* input_data, void* output_data,
                      std::vector<size_t> lod, const bool is_reverse,
                      platform::RNNReorderType reorder_type) {
    switch (reorder_type) {
      // Reorder input memory [WORDS, C] + LoD -> [N, T, C]
      case platform::RNNReorderType::PP_NTC: {
        auto* input_data_iter = reinterpret_cast<T*>(input_data);
        auto* output_data_iter = reinterpret_cast<T*>(output_data);
        for (int n = 0; n < N; ++n) {
          const auto num_elements = (lod[n + 1] - lod[n]) * IC;
          const auto offset = is_reverse ? (Ti * IC - num_elements) : 0;
          memcpy(output_data_iter + n * Ti * IC + offset, input_data_iter,
                 sizeof(T) * num_elements);
          input_data_iter += num_elements;
        }
      } break;
      // Reorder input memory [WORDS, C] + LoD -> [T, N, C]
      case platform::RNNReorderType::PP_TNC: {
        auto* input_data_iter = reinterpret_cast<T*>(input_data);
        auto* output_data_iter = reinterpret_cast<T*>(output_data);
        for (int n = 0; n < N; ++n) {
          const auto num_elements = (lod[n + 1] - lod[n]);
          const auto offset = is_reverse ? (Ti - num_elements) : 0;
          for (size_t t = 0; t < num_elements; ++t) {
            memcpy(output_data_iter + (t + offset) * N * IC + n * IC,
                   input_data_iter, sizeof(T) * IC);
            input_data_iter += IC;
          }
        }
      } break;
      // Reorder output values to PP format [N, T, C] -> [WORDS, C]
      case platform::RNNReorderType::NTC_PP: {
        auto* input_data_iter = reinterpret_cast<T_out*>(input_data);
        auto* output_data_iter = reinterpret_cast<T_out*>(output_data);
        for (int n = 0; n < N; ++n) {
          const auto num_elements = (lod[n + 1] - lod[n]) * OC;
          const auto offset = is_reverse ? (Ti * OC - num_elements) : 0;
          memcpy(output_data_iter, input_data_iter + n * Ti * OC + offset,
                 sizeof(T_out) * num_elements);
          output_data_iter += num_elements;
        }
      } break;
      // Reorder output values to PP format [T, N, C] -> [WORDS, C]
      case platform::RNNReorderType::TNC_PP: {
        auto* input_data_iter = reinterpret_cast<T_out*>(input_data);
        auto* output_data_iter = reinterpret_cast<T_out*>(output_data);
        for (int n = 0; n < N; ++n) {
          const auto num_elements = lod[n + 1] - lod[n];
          const auto offset = is_reverse ? (Ti - num_elements) : 0;
          for (size_t t = 0; t < num_elements; ++t) {
            memcpy(output_data_iter,
                   input_data_iter + (t + offset) * N * OC + n * OC,
                   sizeof(T_out) * OC);
            output_data_iter += OC;
          }
        }
      } break;
    }
  }

  std::shared_ptr<dnnl::memory> AcquireInputMemoryWithReorder(
      const LoDTensor* input, const bool is_reverse) {
    const auto name = this->key_ + "@input_mem";
    auto memory_p =
        std::static_pointer_cast<dnnl::memory>(this->dev_ctx_.GetBlob(name));

    if (!memory_p) {
      memory_p = std::make_shared<dnnl::memory>(this->fwd_pd_->src_desc(),
                                                this->engine_);
      this->dev_ctx_.SetBlob(name, memory_p);
    }

    const auto& input_lod = input->lod()[0];
    auto* x_data = to_void_cast(input->data<T>());

    auto* x_onednn_data = memory_p->get_data_handle();
    memset(x_onednn_data, 0, sizeof(T) * N * Ti * IC);

    if (platform::GetMKLDNNFormat(this->fwd_pd_->src_desc()) ==
        dnnl::memory::format_tag::ntc) {
      reorderRNNdata(x_data, x_onednn_data, input_lod, is_reverse,
                     platform::RNNReorderType::PP_NTC);
    } else {
      reorderRNNdata(x_data, x_onednn_data, input_lod, is_reverse,
                     platform::RNNReorderType::PP_TNC);
    }
    return memory_p;
  }

  std::shared_ptr<dnnl::memory> AcquireOutputMemory() {
    const auto name = this->key_ + "@output_mem";
    auto memory_p =
        std::static_pointer_cast<dnnl::memory>(this->dev_ctx_.GetBlob(name));

    if (!memory_p) {
      memory_p = std::make_shared<dnnl::memory>(this->fwd_pd_->dst_desc(),
                                                this->engine_);
      this->dev_ctx_.SetBlob(name, memory_p);
    }
    return memory_p;
  }

  // TODO(grygielski) H0 is for now persistable
  // TODO(jczaja) H0 should be updated each iter and of T type (Fusion pass does
  // not support in yet)
182
  template <typename U>
183 184 185 186 187 188 189 190
  std::shared_ptr<dnnl::memory> AcquireH0Memory(const Tensor* h0) {
    const std::string h0_key = memory_key_ + "@h0";
    auto memory_p =
        std::static_pointer_cast<dnnl::memory>(this->dev_ctx_.GetBlob(h0_key));

    if (!memory_p) {
      auto user_h0_memory = dnnl::memory();
      if (h0) {
191 192 193
        user_h0_memory = dnnl::memory(
            {{1, 1, N, OC}, MKLDNNGetDataType<U>(), MKLDNNMemoryFormat::ldnc},
            this->engine_, to_void_cast(h0->data<U>()));
194
      } else {
195 196 197 198
        user_h0_memory = dnnl::memory(
            {{1, 1, N, OC}, MKLDNNGetDataType<U>(), MKLDNNMemoryFormat::ldnc},
            this->engine_);
        memset(user_h0_memory.get_data_handle(), 0, sizeof(U) * N * OC);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
      }
      memory_p = std::make_shared<dnnl::memory>(this->fwd_pd_->src_iter_desc(),
                                                this->engine_);

      auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
      dnnl::reorder(user_h0_memory, *memory_p, attr_)
          .execute(astream, user_h0_memory, *memory_p);

      this->dev_ctx_.SetBlob(h0_key, memory_p);
    }
    return memory_p;
  }

 protected:
  // RNN dimensions
  // N - Batch Size
  // Ti - Max sentence length
  // IC - Input Channels
  // OC - Output Channels
  // G  - Number of gates
  const int64_t N, Ti, IC, OC, G;

  // Memory size of weights, bias and h0 does not depend
  // on Ti size, thus we need another key to cache them
  std::string memory_key_;
  dnnl::primitive_attr attr_;
};
}  // namespace operators
}  // namespace paddle