optimizer.html 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Optimizer &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../../genindex.html"/>
        <link rel="search" title="Search" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../../index.html"/>
        <link rel="up" title="Model Configuration" href="../model_configs.html"/>
        <link rel="next" title="Pooling" href="pooling.html"/>
38
        <link rel="prev" title="Evaluators" href="evaluators.html"/> 
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86 87 88 89
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">API</a></li>
90
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_en.html">MOBILE</a></li>
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
127
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_en.html">PaddlePaddle Distributed Training</a></li>
128 129
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
130
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li>
131
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/new_layer_en.html">Write New Layers</a></li>
132
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
133 134 135 136
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
137 138 139 140 141 142 143
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">API</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="../model_configs.html">Model Configuration</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="layer.html">Layers</a></li>
144
<li class="toctree-l3"><a class="reference internal" href="evaluators.html">Evaluators</a></li>
145 146 147 148 149 150
<li class="toctree-l3 current"><a class="current reference internal" href="#">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
151 152 153 154 155 156
<li class="toctree-l2"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/dataset.html">Dataset</a></li>
</ul>
</li>
157 158 159
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
</ul>
</li>
160 161 162 163 164
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../../index_en.html">API</a> > </li>
      
        <li><a href="../model_configs.html">Model Configuration</a> > </li>
      
    <li>Optimizer</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="optimizer">
199
<h1>Optimizer<a class="headerlink" href="#optimizer" title="Permalink to this headline"></a></h1>
200 201
<div class="section" id="momentum">
<h2>Momentum<a class="headerlink" href="#momentum" title="Permalink to this headline"></a></h2>
202 203 204
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Momentum</code><span class="sig-paren">(</span><em>momentum=None</em>, <em>sparse=False</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
205 206
<dd><p>Momentum Optimizer.</p>
<p>When sparse=False, the momentum update formula is as follows:</p>
207
<div class="math">
208
\[\begin{split}v_{t} &amp;= k * v_{t-1} - \gamma_t (g_{t} + \lambda w_{t-1}) \\
209 210 211 212 213 214
w_{t} &amp;= w_{t-1} + v_{t} \\\end{split}\]</div>
<p>where, <span class="math">\(k\)</span> is momentum, <span class="math">\(\lambda\)</span> is decay rate,
<span class="math">\(\gamma_t\)</span> is learning rate at the t&#8217;th iteration.
<span class="math">\(w_{t}\)</span> is the weight as the t&#8217;th iteration.
And the <span class="math">\(v_{t}\)</span> is the history momentum variable.</p>
<p>When sparse=True, the update scheme:</p>
215
<div class="math">
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
\[\begin{split}\alpha_t &amp;= \alpha_{t-1} / k \\
\beta_t &amp;= \beta_{t-1} / (1 + \lambda \gamma_t) \\
u_t &amp;= u_{t-1} - \alpha_t \gamma_t g_t \\
v_t &amp;= v_{t-1} + \tau_{t-1} \alpha_t \gamma_t g_t \\
\tau_t &amp;= \tau_{t-1} + \beta_t / \alpha_t\end{split}\]</div>
<p>where <span class="math">\(k\)</span> is momentum, <span class="math">\(\lambda\)</span> is decay rate,
<span class="math">\(\gamma_t\)</span> is learning rate at the t&#8217;th iteration.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>momentum</strong> (<em>float</em>) &#8211; the momentum factor.</li>
<li><strong>sparse</strong> (<em>bool</em>) &#8211; with sparse support or not, False by default.</li>
</ul>
</td>
</tr>
</tbody>
</table>
235 236
</dd></dl>

237 238 239
</div>
<div class="section" id="adam">
<h2>Adam<a class="headerlink" href="#adam" title="Permalink to this headline"></a></h2>
240 241 242 243 244 245 246 247
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Adam</code><span class="sig-paren">(</span><em>beta1=0.9</em>, <em>beta2=0.999</em>, <em>epsilon=1e-08</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adam optimizer.
The details of please refer <a class="reference external" href="https://arxiv.org/abs/1412.6980">Adam: A Method for Stochastic Optimization</a></p>
<div class="math">
\[\begin{split}m(w, t) &amp; = \beta_1 m(w, t-1) + (1 - \beta_1) \nabla Q_i(w) \\
v(w, t) &amp; = \beta_2 v(w, t-1) + (1 - \beta_2)(\nabla Q_i(w)) ^2 \\
248
w &amp; = w - \frac{\eta m(w, t)}{\sqrt{v(w,t) + \epsilon}}\end{split}\]</div>
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>beta1</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_1\)</span> in equation.</li>
<li><strong>beta2</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_2\)</span> in equation.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; the <span class="math">\(\epsilon\)</span> in equation. It is used to prevent
divided by zero.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

265 266 267
</div>
<div class="section" id="adamax">
<h2>Adamax<a class="headerlink" href="#adamax" title="Permalink to this headline"></a></h2>
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Adamax</code><span class="sig-paren">(</span><em>beta1=0.9</em>, <em>beta2=0.999</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adamax optimizer.</p>
<p>The details of please refer this <a class="reference external" href="https://arxiv.org/abs/1412.6980">Adam: A Method for Stochastic Optimization</a></p>
<div class="math">
\[\begin{split}m_t &amp; = \beta_1 * m_{t-1} + (1-\beta_1)* \nabla Q_i(w) \\
u_t &amp; = max(\beta_2*u_{t-1}, abs(\nabla Q_i(w))) \\
w_t &amp; = w_{t-1} - (\eta/(1-\beta_1^t))*m_t/u_t\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>beta1</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_1\)</span> in the equation.</li>
<li><strong>beta2</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_2\)</span> in the equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

291 292 293
</div>
<div class="section" id="adagrad">
<h2>AdaGrad<a class="headerlink" href="#adagrad" title="Permalink to this headline"></a></h2>
294 295 296 297 298 299 300 301 302 303 304
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">AdaGrad</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adagrad(for ADAptive GRAdient algorithm) optimizer.</p>
<p>For details please refer this <a class="reference external" href="http://www.magicbroom.info/Papers/DuchiHaSi10.pdf">Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization</a>.</p>
<div class="math">
\[\begin{split}G &amp;= \sum_{\tau=1}^{t} g_{\tau} g_{\tau}^T \\
w &amp; = w - \eta diag(G)^{-\frac{1}{2}} \circ g\end{split}\]</div>
</dd></dl>

305 306 307
</div>
<div class="section" id="decayedadagrad">
<h2>DecayedAdaGrad<a class="headerlink" href="#decayedadagrad" title="Permalink to this headline"></a></h2>
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">DecayedAdaGrad</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AdaGrad method with decayed sum gradients. The equations of this method
show as follow.</p>
<div class="math">
\[\begin{split}E(g_t^2) &amp;= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 \\
learning\_rate &amp;= 1/sqrt( ( E(g_t^2) + \epsilon )\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; The <span class="math">\(\rho\)</span> parameter in that equation</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; The <span class="math">\(\epsilon\)</span> parameter in that equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

330 331 332
</div>
<div class="section" id="adadelta">
<h2>AdaDelta<a class="headerlink" href="#adadelta" title="Permalink to this headline"></a></h2>
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">AdaDelta</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AdaDelta method. The details of adadelta please refer to this
<a class="reference external" href="http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf">ADADELTA: AN ADAPTIVE LEARNING RATE METHOD</a>.</p>
<div class="math">
\[\begin{split}E(g_t^2) &amp;= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 \\
learning\_rate &amp;= sqrt( ( E(dx_{t-1}^2) + \epsilon ) / ( \
                  E(g_t^2) + \epsilon ) ) \\
E(dx_t^2) &amp;= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; <span class="math">\(\rho\)</span> in equation</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; <span class="math">\(\rho\)</span> in equation</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

357 358 359
</div>
<div class="section" id="rmsprop">
<h2>RMSProp<a class="headerlink" href="#rmsprop" title="Permalink to this headline"></a></h2>
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">RMSProp</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>RMSProp(for Root Mean Square Propagation) optimizer. For details please
refer this <a class="reference external" href="http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf">slide</a>.</p>
<p>The equations of this method as follows:</p>
<div class="math">
\[\begin{split}v(w, t) &amp; = \rho v(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2 \\
w &amp; = w - \frac{\eta} {\sqrt{v(w,t) + \epsilon}} \nabla Q_{i}(w)\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; the <span class="math">\(\rho\)</span> in the equation. The forgetting factor.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; the <span class="math">\(\epsilon\)</span> in the equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

383 384 385 386 387 388 389 390 391 392 393 394 395
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="pooling.html" class="btn btn-neutral float-right" title="Pooling" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
396
        <a href="evaluators.html" class="btn btn-neutral" title="Evaluators" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
430 431
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
432 433 434 435 436
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
437
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
438 439 440 441 442 443 444 445 446 447 448 449 450 451
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>