eigen_values_vectors.h 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/memory/memory.h"
18
#include "paddle/fluid/operators/math/lapack_function.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include "paddle/fluid/operators/svd_helper.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cusolver.h"
#endif  // PADDLE_WITH_CUDA

namespace paddle {
namespace operators {
namespace math {

inline int64_t GetBatchSize(framework::DDim dims) {
  int64_t batch_size = 1;
  auto dim_size = dims.size();
  for (int i = 0; i < dim_size - 2; i++) {
    batch_size *= dims[i];
  }
  return batch_size;
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50
static void CheckEighResult(const int batch, const int info) {
  PADDLE_ENFORCE_LE(
      info, 0,
      platform::errors::PreconditionNotMet(
          "For batch [%d]: the [%d] off-diagonal elements of an intermediate"
          "tridiagonal form did not converge to zero",
          batch, info));
  PADDLE_ENFORCE_GE(
      info, 0, platform::errors::PreconditionNotMet(
                   "For batch [%d]: the [%d] argument had an illegal value",
                   batch, info));
}

template <typename DeviceContext, typename T>
51 52 53 54 55 56
struct MatrixEighFunctor {
  void operator()(const framework::ExecutionContext &ctx, const Tensor &input,
                  Tensor *eigen_values, Tensor *eigen_vectors, bool is_lower,
                  bool has_vectors);
};

57 58 59
// Calculates the eigenvalues ​​and eigenvectors of Hermitian or real
// symmetric matrices, and uses the variable has_vectors to
// control whether to return the eigenvectors.
60 61
template <typename T>
struct MatrixEighFunctor<platform::CPUDeviceContext, T> {
62 63 64 65
 public:
  void operator()(const framework::ExecutionContext &ctx, const Tensor &input,
                  Tensor *eigen_values, Tensor *eigen_vectors, bool is_lower,
                  bool has_vectors) {
66 67
    using ValueType = math::Real<T>;
    auto *out_value = eigen_values->mutable_data<ValueType>(ctx.GetPlace());
68

69
    auto dito =
70 71
        math::DeviceIndependenceTensorOperations<platform::CPUDeviceContext, T>(
            ctx);
72

73 74 75 76 77
    Tensor input_trans;
    // lapack is a column-major storge, transpose make the input to
    // have a continuous memory layout
    input_trans = dito.Transpose(input);
    auto *input_vector = input_trans.data<T>();
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    auto dims = input.dims();
    int dim_size = dims.size();
    int64_t batch_size = GetBatchSize(dims);

    int vector_stride = dims[dim_size - 1] * dims[dim_size - 2];
    int values_stride = dims[dim_size - 1];
    char uplo = is_lower ? 'L' : 'U';
    char jobz = has_vectors ? 'V' : 'N';
    auto n = dims[dim_size - 1];
    auto lda = std::max<int64_t>(1, n);
    // if work = -1, it means that you need to use the lapack function to query
    // the optimal value
    int lwork = -1;      // The length of the array work
    int lrwork = -1;     // The dimension of the array rwork,rwork is REAL array
    int liwork = -1;     // The dimension of the array iwork
    int iwork_opt = -1;  // The optimal length of the array liwork
    T lwork_opt = static_cast<T>(-1);  // The optimal length of the array work
    ValueType rwork_opt =
        static_cast<ValueType>(-1);  // The optimal length of the array rwork

    int info = 0;
    // Call lapackEigh to get the optimal size of work data
    math::lapackEigh<T, ValueType>(jobz, uplo, n, input_vector, lda, out_value,
                                   &lwork_opt, lwork, &rwork_opt, lrwork,
                                   &iwork_opt, liwork, &info);
    lwork = std::max<int>(1, static_cast<int>(lwork_opt));
    liwork = std::max<int>(1, iwork_opt);

    Tensor rwork_tensor;
    ValueType *rwork_data = nullptr;

    // complex type
    if (framework::IsComplexType(input.type())) {
      lrwork = std::max<int>(1, static_cast<int>(rwork_opt));
      rwork_data = rwork_tensor.mutable_data<ValueType>(
          framework::make_ddim({lrwork}), ctx.GetPlace());
    }
    Tensor iwork_tensor, work_tensor;
    auto *iwork_data = iwork_tensor.mutable_data<int>(
        framework::make_ddim({liwork}), ctx.GetPlace());
    auto *work_data = work_tensor.mutable_data<T>(framework::make_ddim({lwork}),
                                                  ctx.GetPlace());

    for (auto i = 0; i < batch_size; i++) {
      auto *value_data = out_value + i * values_stride;
      auto *input_data = input_vector + i * vector_stride;
      math::lapackEigh<T, Real<T>>(jobz, uplo, n, input_data, lda, value_data,
                                   work_data, lwork, rwork_data, lrwork,
                                   iwork_data, liwork, &info);
      CheckEighResult(i, info);
    }
    if (has_vectors) {
      PADDLE_ENFORCE_NOT_NULL(eigen_vectors,
                              platform::errors::InvalidArgument(
                                  "When has_vectors is true,"
                                  "the eigenvectors needs to be calculated, "
                                  "so the eigenvectors must be provided."));
      input_trans = dito.Transpose(input_trans);
      eigen_vectors->ShareDataWith(input_trans);
138 139 140 141 142 143 144 145 146
    }
  }
};

#ifdef PADDLE_WITH_CUDA

// Calculates the eigenvalues ​​and eigenvectors of Hermitian or real
// symmetric matrices on GPU, and uses the variable has_vectors
// to control whether to return the eigenvectors.
147 148
template <typename T>
struct MatrixEighFunctor<platform::CUDADeviceContext, T> {
149 150 151 152
 public:
  void operator()(const framework::ExecutionContext &ctx, const Tensor &input,
                  Tensor *eigen_values, Tensor *eigen_vectors, bool is_lower,
                  bool has_vectors) {
153
    using ValueType = math::Real<T>;
154 155
    auto *out_value = eigen_values->mutable_data<ValueType>(ctx.GetPlace());

156 157 158 159 160 161 162
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto dito =
        math::DeviceIndependenceTensorOperations<platform::CUDADeviceContext,
                                                 T>(ctx);
    Tensor input_trans;
    input_trans = dito.Transpose(input);
    auto *input_vector = input_trans.data<T>();
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    auto &dims = input.dims();
    int dim_size = dims.size();
    int64_t batch_size = GetBatchSize(dims);

    cublasFillMode_t uplo =
        is_lower ? CUBLAS_FILL_MODE_LOWER : CUBLAS_FILL_MODE_UPPER;
    cusolverEigMode_t jobz =
        has_vectors ? CUSOLVER_EIG_MODE_VECTOR : CUSOLVER_EIG_MODE_NOVECTOR;

    int n = dims[dim_size - 1];
    int lda = std::max<int>(1, n);
    auto vector_stride = dims[dim_size - 1] * dims[dim_size - 2];
    auto values_stride = dims[dim_size - 1];
    int lwork = 0;
    auto info = memory::Alloc(dev_ctx, sizeof(int) * batch_size);
    auto *info_ptr = reinterpret_cast<int *>(info->ptr());

    // When the input type is float32, and the feature value input dimension is
    // greater than or equal to [*,32,32]  and less than or equal to
    // [*,512,512], Syevj has better performance.
183 184
    bool use_syevj = (input.type() == framework::proto::VarType::FP32 &&
                      values_stride >= 32 && values_stride <= 512);
185 186
    syevjInfo_t syevj_params;
    if (use_syevj) {
187
      PADDLE_ENFORCE_GPU_SUCCESS(
188
          platform::dynload::cusolverDnCreateSyevjInfo(&syevj_params));
189 190 191 192
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSsyevj_bufferSize(
          dev_ctx.cusolver_dn_handle(), jobz, uplo, n,
          reinterpret_cast<const float *>(input_vector), lda,
          reinterpret_cast<const float *>(out_value), &lwork, syevj_params));
193
    } else {
194
      EvdBuffer(dev_ctx.cusolver_dn_handle(), jobz, uplo, n, input_vector, lda,
195 196 197 198 199
                out_value, &lwork);
    }
    auto work = memory::Alloc(dev_ctx, sizeof(T) * lwork);
    auto *work_ptr = reinterpret_cast<T *>(work->ptr());
    for (auto i = 0; i < batch_size; i++) {
200 201
      auto *input_data = input_vector + i * vector_stride;
      auto *value_data = out_value + i * values_stride;
202 203
      auto handle = dev_ctx.cusolver_dn_handle();
      if (use_syevj) {
204
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSsyevj(
205
            handle, jobz, uplo, n, reinterpret_cast<float *>(input_data), lda,
206 207 208 209
            reinterpret_cast<float *>(value_data),
            reinterpret_cast<float *>(work_ptr), lwork, info_ptr,
            syevj_params));
      } else {
210 211
        Evd(handle, jobz, uplo, n, input_data, lda, value_data, work_ptr, lwork,
            info_ptr);
212
      }
213
      int error_info = 0;
214
      memory::Copy(platform::CPUPlace(), &error_info, dev_ctx.GetPlace(),
215
                   info_ptr, sizeof(int), dev_ctx.stream());
216
      CheckEighResult(i, error_info);
217 218 219
    }

    if (use_syevj) {
220
      PADDLE_ENFORCE_GPU_SUCCESS(
221 222 223
          platform::dynload::cusolverDnDestroySyevjInfo(syevj_params));
    }
    if (has_vectors) {
224 225 226 227 228 229 230
      PADDLE_ENFORCE_NOT_NULL(eigen_vectors,
                              platform::errors::InvalidArgument(
                                  "When has_vectors is true,"
                                  "the eigenvectors needs to be calculated,"
                                  "so the eigenvectors must be provided."));
      input_trans = dito.Transpose(input_trans);
      eigen_vectors->ShareDataWith(input_trans);
231 232 233
    }
  }

234
  using ValueType = math::Real<T>;
235 236 237 238 239 240 241 242 243
  inline void EvdBuffer(cusolverDnHandle_t handle, cusolverEigMode_t jobz,
                        cublasFillMode_t uplo, int n, const T *A, int lda,
                        const ValueType *W, int *lwork) const;

  inline void Evd(cusolverDnHandle_t handle, cusolverEigMode_t jobz,
                  cublasFillMode_t uplo, int n, T *A, int lda, ValueType *W,
                  T *work, int lwork, int *devInfo) const;
};

244 245 246 247
#define FUNC_WITH_TYPES(m)                                \
  m(float, Ssy, float) m(double, Dsy, double)             \
      m(paddle::platform::complex<float>, Che, cuComplex) \
          m(paddle::platform::complex<double>, Zhe, cuDoubleComplex)
248

249
#define EVDBUFFER_INSTANCE(T, C, CastType)                                     \
250
  template <>                                                                  \
251
  inline void MatrixEighFunctor<platform::CUDADeviceContext, T>::EvdBuffer(    \
252 253 254
      cusolverDnHandle_t handle, cusolverEigMode_t jobz,                       \
      cublasFillMode_t uplo, int n, const T *A, int lda, const ValueType *W,   \
      int *lwork) const {                                                      \
255
    PADDLE_ENFORCE_GPU_SUCCESS(                                                \
256 257 258 259 260 261 262
        platform::dynload::cusolverDn##C##evd_bufferSize(                      \
            handle, jobz, uplo, n, reinterpret_cast<const CastType *>(A), lda, \
            W, lwork));                                                        \
  }

FUNC_WITH_TYPES(EVDBUFFER_INSTANCE);

263
#define EVD_INSTANCE(T, C, CastType)                                      \
264
  template <>                                                             \
265
  inline void MatrixEighFunctor<platform::CUDADeviceContext, T>::Evd(     \
266 267 268
      cusolverDnHandle_t handle, cusolverEigMode_t jobz,                  \
      cublasFillMode_t uplo, int n, T *A, int lda, ValueType *W, T *work, \
      int lwork, int *devInfo) const {                                    \
269
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDn##C##evd(     \
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        handle, jobz, uplo, n, reinterpret_cast<CastType *>(A), lda, W,   \
        reinterpret_cast<CastType *>(work), lwork, devInfo));             \
  }

FUNC_WITH_TYPES(EVD_INSTANCE);

#undef FUNC_WITH_TYPES
#undef EVDBUFFER_INSTANCE
#undef EVD_INSTANCE

#endif  // PADDLE_WITH_CUDA

}  // namespace math
}  // namespace operators
}  // namespace paddle