prroi_pool_op.cu 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/prroi_pool_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaximumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaximumNumBlocks);
}

template <typename T>
DEVICE void PrRoIPoolingDistributeDiffCUDA(T* diff, const T top_diff,
                                           const int h, const int w,
                                           const int height, const int width,
                                           const T coeff) {
  bool overflow = (h < 0) || (w < 0) || (h >= height) || (w >= width);
  if (!overflow) {
    paddle::platform::CudaAtomicAdd(diff + h * width + w, top_diff * coeff);
  }
}

43 44 45 46 47
template <typename T>
DEVICE void GPUAccumulateRois(T* offset, T data) {
  paddle::platform::CudaAtomicAdd(offset, data);
}

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
template <typename T>
__global__ void GPUPRROIPoolForward(
    const int nthreads, const T* input_data, const T* input_rois,
    const float spatial_scale, const int input_channels, const int height,
    const int width, const int output_channels, const int pooled_height,
    const int pooled_width, const int* rois_batch_id_data, T* output_data) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
    // The output is in order (n, c, ph, pw)
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % output_channels;
    int n = i / pooled_width / pooled_height / output_channels;

    // set roi_batch_id
    int roi_batch_id = rois_batch_id_data[n];

    // [start, end) interval for spatial sampling
    const T* offset_input_rois = input_rois + n * 4;
    T roi_start_w = static_cast<T>(offset_input_rois[0]) * spatial_scale;
    T roi_start_h = static_cast<T>(offset_input_rois[1]) * spatial_scale;
    T roi_end_w = static_cast<T>(offset_input_rois[2]) * spatial_scale;
    T roi_end_h = static_cast<T>(offset_input_rois[3]) * spatial_scale;

    T roi_width = max(roi_end_w - roi_start_w, static_cast<T>(0.0));
    T roi_height = max(roi_end_h - roi_start_h, static_cast<T>(0.0));

    // Compute w and h at input feature map
    T bin_size_h = roi_height / static_cast<T>(pooled_height);
    T bin_size_w = roi_width / static_cast<T>(pooled_width);

    T win_start_w = roi_start_w + bin_size_w * pw;
    T win_start_h = roi_start_h + bin_size_h * ph;
    T win_end_w = win_start_w + bin_size_w;
    T win_end_h = win_start_h + bin_size_h;

    T win_size = max(static_cast<T>(0.0), bin_size_w * bin_size_h);
86
    int input_channel = c;
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    const T* offset_input_data =
        input_data +
        (roi_batch_id * input_channels + input_channel) * height * width;

    if (win_size > static_cast<T>(0.0)) {
      int s_w = floor(win_start_w);
      int e_w = ceil(win_end_w);
      int s_h = floor(win_start_h);
      int e_h = ceil(win_end_h);
      T sum_out = 0;

      for (int w_iter = s_w; w_iter < e_w; ++w_iter) {
        for (int h_iter = s_h; h_iter < e_h; ++h_iter) {
          sum_out += PrRoIPoolingMatCalculation(
              offset_input_data, h_iter, w_iter, h_iter + 1, w_iter + 1,
              max(win_start_h, static_cast<T>(h_iter)),
              max(win_start_w, static_cast<T>(w_iter)),
              min(win_end_h, static_cast<T>(h_iter) + static_cast<T>(1.0)),
              min(win_end_w, static_cast<T>(w_iter) + static_cast<T>(1.0)),
              height, width);
        }
      }
      output_data[i] = sum_out / win_size;
    } else {
      output_data[i] = 0.;
    }
  }
}

template <typename T>
__global__ void GPUPRROIPoolBackward(
118 119 120 121 122 123
    const int nthreads, const T* in_data, const T* input_rois,
    const T* output_grad_data, const float spatial_scale,
    const int input_channels, const int height, const int width,
    const int output_channels, const int pooled_height, const int pooled_width,
    const int* rois_batch_id_data, T* input_grad_data, const T* out_data,
    T* input_roi_grad_data) {
124 125 126 127 128 129 130 131 132 133 134
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    // The output is in order (n, c, ph, pw)
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % output_channels;
    int n = i / pooled_width / pooled_height / output_channels;

    // set roi_batch_id
    int roi_batch_id = rois_batch_id_data[n];
135
    int input_channel = c;
136 137 138 139 140 141 142 143 144 145 146
    int input_offset =
        (roi_batch_id * input_channels + input_channel) * height * width;
    T* offset_input_grad_data = input_grad_data + input_offset;
    const T* offset_output_grad_data = output_grad_data + i;

    // [start, end) interval for spatial sampling
    const T* offset_input_rois = input_rois + n * 4;
    T roi_start_w = static_cast<T>(offset_input_rois[0]) * spatial_scale;
    T roi_start_h = static_cast<T>(offset_input_rois[1]) * spatial_scale;
    T roi_end_w = static_cast<T>(offset_input_rois[2]) * spatial_scale;
    T roi_end_h = static_cast<T>(offset_input_rois[3]) * spatial_scale;
147
    T* offset_input_roi_grad_data = input_roi_grad_data + n * 4;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    T roi_width = max(roi_end_w - roi_start_w, static_cast<T>(0.0));
    T roi_height = max(roi_end_h - roi_start_h, static_cast<T>(0.0));

    // Compute w and h at input feature map
    T bin_size_h = roi_height / static_cast<T>(pooled_height);
    T bin_size_w = roi_width / static_cast<T>(pooled_width);

    T win_start_w = roi_start_w + bin_size_w * pw;
    T win_start_h = roi_start_h + bin_size_h * ph;
    T win_end_w = win_start_w + bin_size_w;
    T win_end_h = win_start_h + bin_size_h;

    T win_size = max(static_cast<T>(0.0), bin_size_w * bin_size_h);
    int s_w = floor(win_start_w);
    int e_w = ceil(win_end_w);
    int s_h = floor(win_start_h);
    int e_h = ceil(win_end_h);

    T sum_out = win_size == static_cast<T>(0.)
                    ? static_cast<T>(0.)
                    : *offset_output_grad_data / win_size;

    for (int w_iter = s_w; w_iter < e_w; ++w_iter) {
      for (int h_iter = s_h; h_iter < e_h; ++h_iter) {
        PrRoIPoolingMatDistributeDiff(
            offset_input_grad_data, sum_out, h_iter, w_iter, h_iter + 1,
            w_iter + 1, max(win_start_h, static_cast<T>(h_iter)),
            max(win_start_w, static_cast<T>(w_iter)),
            min(win_end_h, static_cast<T>(h_iter) + static_cast<T>(1.0)),
            min(win_end_w, static_cast<T>(w_iter) + static_cast<T>(1.0)),
            height, width, PrRoIPoolingDistributeDiffCUDA<T>);
      }
    }
182 183 184 185 186 187

    const T* offset_out_data = out_data + i;
    const T* offset_in_data = in_data + input_offset;
    PrRoIPoolingCoorBackward(
        s_w, e_w, s_h, e_h, width, height, win_start_w, win_start_h, win_end_w,
        win_end_h, pw, ph, pooled_width, pooled_height, win_size, spatial_scale,
188 189
        offset_in_data, offset_out_data, offset_input_roi_grad_data,
        offset_output_grad_data, GPUAccumulateRois<T>,
190 191
        [](const T x, const T y) { return max(x, y); },
        [](const T x, const T y) { return min(x, y); });
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  }
}

template <typename T>
class GPUPRROIPoolOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int input_channels = in_dims[1];
210
    auto output_channels = input_channels;
211 212 213 214 215 216 217 218 219 220 221
    int height = in_dims[2];
    int width = in_dims[3];

    int rois_num = rois->dims()[0];
    if (rois_num == 0) return;

    // set rois batch id
    framework::Tensor rois_batch_id_list;
    rois_batch_id_list.Resize({rois_num});
    int* rois_batch_id_data =
        rois_batch_id_list.mutable_data<int>(platform::CPUPlace());
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    if (ctx.HasInput("BatchRoINums") || rois->lod().empty()) {
      auto* batchroinum = ctx.Input<Tensor>("BatchRoINums");
      framework::Tensor batch_index_cpu;
      framework::TensorCopySync(*batchroinum, platform::CPUPlace(),
                                &batch_index_cpu);

      int rois_batch_size = batchroinum->dims()[0];
      auto* batch_index = batch_index_cpu.data<int64_t>();
      size_t c = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int64_t k = 0; k < batch_index[n]; ++k) {
          rois_batch_id_data[c] = n;
          c = c + 1;
        }
237 238
      }

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    } else {
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
              "The rois_batch_size and input(X) batch_size must be the same."));
      int rois_num_with_lod = rois_lod[rois_batch_size];
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The rois_num from input and lod must be the same."));

      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          rois_batch_id_data[i] = n;
        }
      }
    }
258 259 260 261 262

    int output_size = out->numel();
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;

263 264 265 266 267 268 269 270 271
    auto cplace = platform::CPUPlace();
    auto& dev_ctx = ctx.cuda_device_context();
    int bytes = rois_batch_id_list.numel() * sizeof(int);
    auto roi_ptr = memory::Alloc(dev_ctx, bytes);
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
    memory::Copy(gplace, roi_id_data, cplace, rois_batch_id_data, bytes,
                 dev_ctx.stream());

272
    // call cuda kernel function
273
    GPUPRROIPoolForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
274 275
        output_size, in->data<T>(), rois->data<T>(), spatial_scale,
        input_channels, height, width, output_channels, pooled_height,
276
        pooled_width, roi_id_data, out->mutable_data<T>(ctx.GetPlace()));
277 278 279 280 281 282 283 284 285
  }
};

template <typename DeviceContext, typename T>
class GPUPRROIPoolGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");
286
    auto* out = ctx.Input<framework::Tensor>("Out");
287 288 289

    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
290 291
    auto* input_roi_grad =
        ctx.Output<LoDTensor>(framework::GradVarName("ROIs"));
292 293 294 295 296 297 298

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    int rois_num = rois->dims()[0];
    int input_channels = in->dims()[1];
299
    auto output_channels = input_channels;
300 301 302
    int height = in->dims()[2];
    int width = in->dims()[3];

303
    if (input_grad || input_roi_grad) {
304 305 306 307 308
      // set roi batch id
      framework::Tensor rois_batch_id_list;
      rois_batch_id_list.Resize({rois_num});
      int* rois_batch_id_data =
          rois_batch_id_list.mutable_data<int>(platform::CPUPlace());
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

      if (ctx.HasInput("BatchRoINums") || rois->lod().empty()) {
        auto* batchroinum = ctx.Input<Tensor>("BatchRoINums");
        framework::Tensor batch_index_cpu;
        framework::TensorCopySync(*batchroinum, platform::CPUPlace(),
                                  &batch_index_cpu);

        int rois_batch_size = batchroinum->dims()[0];
        auto* batch_index = batch_index_cpu.data<int64_t>();
        size_t c = 0;
        for (int n = 0; n < rois_batch_size; ++n) {
          for (int64_t k = 0; k < batch_index[n]; ++k) {
            rois_batch_id_data[c] = n;
            c = c + 1;
          }
        }
      } else {
        PADDLE_ENFORCE_EQ(rois->lod().empty(), false,
                          platform::errors::InvalidArgument(
T
tianshuo78520a 已提交
328
                              "the lod of Input ROIs should not be empty when "
329 330 331 332 333 334 335
                              "BatchRoINums is None!"));
        auto rois_lod = rois->lod().back();
        int rois_batch_size = rois_lod.size() - 1;
        for (int n = 0; n < rois_batch_size; ++n) {
          for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
            rois_batch_id_data[i] = n;
          }
336 337 338
        }
      }

339 340 341 342 343 344 345 346
      auto cplace = platform::CPUPlace();
      auto& dev_ctx = ctx.cuda_device_context();
      int bytes = rois_batch_id_list.numel() * sizeof(int);
      auto roi_ptr = memory::Alloc(dev_ctx, bytes);
      int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
      const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
      memory::Copy(gplace, roi_id_data, cplace, rois_batch_id_data, bytes,
                   dev_ctx.stream());
347 348 349 350

      input_grad->mutable_data<T>(ctx.GetPlace());
      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(ctx.cuda_device_context(), input_grad, static_cast<T>(0));
351 352
      input_roi_grad->mutable_data<T>(ctx.GetPlace());
      set_zero(ctx.cuda_device_context(), input_roi_grad, static_cast<T>(0));
353 354 355 356 357 358

      int output_grad_size = output_grad->numel();
      int blocks = NumBlocks(output_grad_size);
      int threads = kNumCUDAThreads;

      if (output_grad_size > 0) {
359
        GPUPRROIPoolBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
360 361
            output_grad_size, in->data<T>(), rois->data<T>(),
            output_grad->data<T>(), spatial_scale, input_channels, height,
362
            width, output_channels, pooled_height, pooled_width, roi_id_data,
363 364
            input_grad->mutable_data<T>(ctx.GetPlace()), out->data<T>(),
            input_roi_grad->mutable_data<T>(ctx.GetPlace()));
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(prroi_pool, ops::GPUPRROIPoolOpKernel<float>,
                        ops::GPUPRROIPoolOpKernel<double>);
REGISTER_OP_CUDA_KERNEL(
    prroi_pool_grad,
    ops::GPUPRROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUPRROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, double>);