crop_op.cc 6.3 KB
Newer Older
W
whs 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/crop_op.h"
W
wanghaoshuang 已提交
16
#include <boost/lexical_cast.hpp>
W
wanghaoshuang 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;

class CropOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28 29 30 31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of CropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of CropOp should not be null.");
    auto x_dim = ctx->GetInputDim("X");
    if (!ctx->HasInput("Y")) {
      auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
W
wanghaoshuang 已提交
35
      PADDLE_ENFORCE_EQ(
36
          int64_t(shape.size()), x_dim.size(),
W
wanghaoshuang 已提交
37
          "Shape size should be equal to dimention size of input tensor.");
W
wanghaoshuang 已提交
38
      std::vector<int64_t> tensor_shape(shape.size());
39
      for (size_t i = 0; i < shape.size(); ++i) {
40
        tensor_shape[i] = static_cast<int64_t>(shape[i]);
W
wanghaoshuang 已提交
41
      }
Q
Qiao Longfei 已提交
42
      ctx->SetOutputDim("Out", framework::make_ddim(tensor_shape));
W
wanghaoshuang 已提交
43
    } else {
Q
Qiao Longfei 已提交
44 45
      auto y_dim = ctx->GetInputDim("Y");
      PADDLE_ENFORCE_EQ(framework::arity(x_dim), framework::arity(y_dim),
W
wanghaoshuang 已提交
46 47
                        "Tensor rank of both CropOp's "
                        "inputs must be same.");
Q
Qiao Longfei 已提交
48
      ctx->SetOutputDim("Out", y_dim);
W
wanghaoshuang 已提交
49 50
    }
  }
51 52 53

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
54 55
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
56
  }
W
wanghaoshuang 已提交
57 58 59 60
};

class CropOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
61
  void Make() override {
62 63
    AddInput("X",
             "The input of pad op. "
K
Kexin Zhao 已提交
64
             "The input should be a k-D tensor(k > 0 and k < 7).");
65
    AddInput("Y",
K
Kexin Zhao 已提交
66 67
             "The input used as reference for cropping, "
             "which is of the same dimensions as X.")
Y
Yang Yang(Tony) 已提交
68
        .AsDispensable();
F
stash  
fengjiayi 已提交
69 70 71 72 73
    AddInput("Offsets",
             "The input used to describe offsets in runtime, which is a "
             "1-D vector whose size equals to the rank of input 'X'. The "
             "elements data type must be int.")
        .AsDispensable();
74
    AddOutput("Out",
K
Kexin Zhao 已提交
75 76
              "The output of crop op, "
              "which is of the same dimensions as X.");
77
    AddAttr<std::vector<int>>("offsets",
K
Kexin Zhao 已提交
78 79
                              "A list<int> describing offsets to be cropped. "
                              "The size of offsets list should be the same as "
F
stash  
fengjiayi 已提交
80 81
                              "the dimension size of input X.")
        .SetDefault(std::vector<int>());
82
    AddAttr<std::vector<int>>("shape",
K
Kexin Zhao 已提交
83 84 85
                              "A list<int> describing the shape of output. "
                              "The size of shape list should be the same as "
                              "the dimension size of input X.")
86
        .SetDefault(std::vector<int>());
W
wanghaoshuang 已提交
87 88
    AddComment(R"DOC(
Crop Operator.
K
Kexin Zhao 已提交
89

90 91
Crop input into output, as specified by offsets and shape.

F
stash  
fengjiayi 已提交
92 93 94 95 96 97 98 99 100 101 102
There are two ways to set the offsets:
1. In runtime: Using the input 'Offsets', which is a Vairbale and can be 
               output of other operators. This way is suitable for 
               dynamic offsets.
2. In network configuration: Using the attribute 'offsets', which will be 
                             set in Python configure script. This way is 
                             suitable for fixed offsets.
You CANNOT use these two ways at the same time. An exception will be raised 
if input 'Offset' is configured and meanwhile the attribute 'offsets' is 
not empty.

Q
Qiao Longfei 已提交
103
There are two ways to set shape:
K
Kexin Zhao 已提交
104
1. reference input: crop input X into the same shape as reference input.
Q
Qiao Longfei 已提交
105
                    The dimension of reference input should
K
Kexin Zhao 已提交
106 107 108 109
                    be the same as the dimension of input X.
2. shape list: crop input X into the shape described by a list<int>.
               The size of shape list should be the same as
               the dimension size of input X.
110 111 112

The input should be a k-D tensor(k > 0 and k < 7). As an example:

W
wanghaoshuang 已提交
113 114
Case 1:
Given
115

116 117
    X = [[0, 1, 2, 0, 0]
         [0, 3, 4, 0, 0]
K
Kexin Zhao 已提交
118
         [0, 0, 0, 0, 0]],
119

Q
Qiao Longfei 已提交
120
and
121

K
Kexin Zhao 已提交
122
    offsets = [0, 1],
123 124

and
Q
Qiao Longfei 已提交
125

K
Kexin Zhao 已提交
126
    shape = [2, 2],
127

K
Kexin Zhao 已提交
128
we get:
129

130
    Out = [[1, 2],
K
Kexin Zhao 已提交
131
           [3, 4]].
132

W
wanghaoshuang 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

Case 2:
Given

    X = [[0, 1, 2, 5, 0]
         [0, 3, 4, 6, 0]
         [0, 0, 0, 0, 0]],

and

    offsets = [0, 1],

and

    Y = [[0, 0, 0]
         [0, 0, 0]],

we get:

    Out = [[1, 2, 5],
           [3, 4, 6]].
W
wanghaoshuang 已提交
154 155 156 157 158 159 160 161
)DOC");
  }
};

class CropOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

162
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
163 164 165 166 167 168 169
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
170
    }
W
wanghaoshuang 已提交
171
  }
172 173 174 175

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
Y
Yu Yang 已提交
176
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
177 178
        ctx.device_context());
  }
W
wanghaoshuang 已提交
179 180 181 182 183 184
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
185 186 187
REGISTER_OPERATOR(crop, ops::CropOp, ops::CropOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(crop_grad, ops::CropOpGrad);
W
whs 已提交
188 189
REGISTER_OP_CPU_KERNEL(
    crop, ops::CropKernel<paddle::platform::CPUDeviceContext, float>);
Q
QI JUN 已提交
190 191
REGISTER_OP_CPU_KERNEL(
    crop_grad, ops::CropGradKernel<paddle::platform::CPUDeviceContext, float>);