uniform_random_op.cu 2.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Q
qijun 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"

namespace paddle {
namespace operators {

template <typename T>
struct UniformGenerator {
  T min_, max_;
  unsigned int seed_;

  __host__ __device__ UniformGenerator(T min, T max, int seed)
      : min_(min), max_(max), seed_(seed) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n);
    return dist(rng);
  }
};

// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
class GPUUniformRandomKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed =
        static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
    }
    T min = static_cast<T>(context.op_.GetAttr<float>("min"));
    T max = static_cast<T>(context.op_.GetAttr<float>("max"));
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
    ssize_t N = framework::product(tensor->dims());
    thrust::transform(index_sequence_begin, index_sequence_begin + N,
                      thrust::device_ptr<T>(data),
                      UniformGenerator<T>(min, max, seed));
  }
};

}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
66

Q
qijun 已提交
67
REGISTER_OP_GPU_KERNEL(uniform_random,
Q
qijun 已提交
68 69
                       paddle::operators::GPUUniformRandomKernel<float>);