analyzer_tester.cc 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/analyzer.h"
16

17
#include <google/protobuf/text_format.h>
18
#include <gtest/gtest.h>
19
#include "paddle/fluid/inference/analysis/ut_helper.h"
20
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
21
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
22

23 24 25 26
namespace paddle {
namespace inference {
namespace analysis {

T
tensor-tang 已提交
27
using namespace framework;  // NOLINT
Y
Yan Chunwei 已提交
28

Y
Yan Chunwei 已提交
29
TEST(Analyzer, analysis_without_tensorrt) {
30
  FLAGS_IA_enable_tensorrt_subgraph_engine = false;
Y
Yan Chunwei 已提交
31 32
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
33 34 35 36
  Analyzer analyser;
  analyser.Run(&argument);
}

Y
Yan Chunwei 已提交
37
TEST(Analyzer, analysis_with_tensorrt) {
38
  FLAGS_IA_enable_tensorrt_subgraph_engine = true;
Y
Yan Chunwei 已提交
39
  Argument argument;
N
nhzlx 已提交
40 41 42 43
  argument.Set<int>("minimum_subgraph_size", new int(0));
  argument.Set<int>("max_batch_size", new int(3));
  argument.Set<int>("workspace_size", new int(1 << 20));
  argument.Set<std::string>("precision_mode", new std::string("FP32"));
Y
Yan Chunwei 已提交
44
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
45 46 47 48
  Analyzer analyser;
  analyser.Run(&argument);
}

N
nhzlx 已提交
49
void TestWord2vecPrediction(const std::string& model_path) {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  auto predictor =
      ::paddle::CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
          config);

  // One single batch

  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data = PaddleBuf(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  // For simplicity, we set all the slots with the same data.
  std::vector<PaddleTensor> slots(4, tensor);
  std::vector<PaddleTensor> outputs;
  CHECK(predictor->Run(slots, &outputs));

  PADDLE_ENFORCE(outputs.size(), 1UL);
  // Check the output buffer size and result of each tid.
  PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
  float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
                     0.000932706};
  const size_t num_elements = outputs.front().data.length() / sizeof(float);
  // The outputs' buffers are in CPU memory.
  for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
    LOG(INFO) << "data: "
N
nhzlx 已提交
80 81
              << static_cast<float*>(outputs.front().data.data())[i];
    PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
82 83 84 85
                   result[i]);
  }
}

86 87
TEST(Analyzer, word2vec_without_analysis) {
  TestWord2vecPrediction(FLAGS_inference_model_dir);
88 89
}

90 91 92
}  // namespace analysis
}  // namespace inference
}  // namespace paddle