matmul_v2_op.h 28.9 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <functional>
19
#include <utility>
S
ShenLiang 已提交
20 21 22 23 24
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/dot_op.h"
#include "paddle/fluid/operators/math/blas.h"
C
chentianyu03 已提交
25
#include "paddle/fluid/operators/math/complex_functors.h"
S
ShenLiang 已提交
26 27
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"

28
#if defined(__NVCC__) || defined(__HIPCC__)
S
ShenLiang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#endif

namespace paddle {
namespace operators {

using framework::Tensor;

template <typename T>
struct IdentityFunctor {
  HOSTDEVICE explicit inline IdentityFunctor() {}

  HOSTDEVICE inline T operator()(const T& x) const { return x; }
};

template <typename DeviceContext, typename T>
void ReduceSumForMatmulGrad(const Tensor* input, Tensor* output,
                            const std::vector<int>& reduce_dims,
                            const paddle::framework::ExecutionContext& ctx) {
48 49 50 51 52 53
#ifdef __HIPCC__
  auto stream = ctx.cuda_device_context().stream();
  TensorReduce<T, T, hipcub::Sum, IdentityFunctor<T>>(
      *input, output, reduce_dims, static_cast<T>(0), hipcub::Sum(),
      IdentityFunctor<T>(), stream);
#elif defined(__NVCC__)
S
ShenLiang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  auto stream = ctx.cuda_device_context().stream();
  TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
      *input, output, reduce_dims, static_cast<T>(0), cub::Sum(),
      IdentityFunctor<T>(), stream);
#else
  ReduceKernelFunctor<DeviceContext, T, ops::SumFunctor>(
      input, output, reduce_dims, true, false, ctx)
      .template apply<T>();
#endif
}

static void GetBroadcastFromDims(const int x_ndim, const std::int64_t* x_dims,
                                 const int y_ndim, const std::int64_t* y_dims,
                                 std::int64_t* x_bd_dims,
                                 std::int64_t* y_bd_dims,
                                 std::int64_t* out_bd_dims) {
W
wanghuancoder 已提交
70
  const int ndim = (std::max)(x_ndim, y_ndim);
S
ShenLiang 已提交
71 72 73 74 75 76 77 78
  std::fill(x_bd_dims, x_bd_dims + ndim - x_ndim, 1);
  std::fill(y_bd_dims, y_bd_dims + ndim - y_ndim, 1);
  std::copy(x_dims, x_dims + x_ndim, x_bd_dims + ndim - x_ndim);
  std::copy(y_dims, y_dims + y_ndim, y_bd_dims + ndim - y_ndim);

  for (int i = 0; i < ndim; ++i) {
    PADDLE_ENFORCE_EQ(
        x_bd_dims[i] == y_bd_dims[i] || x_bd_dims[i] <= 1 || y_bd_dims[i] <= 1,
79 80 81 82 83 84 85 86
        true,
        platform::errors::InvalidArgument(
            "Input(X) and Input(Y) has error dim."
            "X_broadcast's shape[%s] must be equal to Y_broadcast's shape[%s],"
            "or X_broadcast's shape[%s] <= 1, or Y_broadcast's shape[%s] <= 1,"
            "But received X_broadcast's shape[%s] = [%s]"
            "received Y_broadcast's shape[%s] = [%s]",
            i, i, i, i, i, x_bd_dims[i], i, y_bd_dims[i]));
S
ShenLiang 已提交
87 88 89
    if (x_bd_dims[i] == 0 || y_bd_dims[i] == 0) {
      out_bd_dims[i] = 0;
    } else {
W
wanghuancoder 已提交
90
      out_bd_dims[i] = (std::max)(x_bd_dims[i], y_bd_dims[i]);
S
ShenLiang 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    }
  }
}

static int64_t GetIndexMessage(const int n, const int64_t* dims,
                               const int64_t* index) {
  int64_t sum = 0;
  for (int i = 0; i < n; ++i) {
    if (dims[i] > 1) {
      sum = sum * dims[i] + index[i];
    }
  }
  return sum;
}

static void IndexIncreaseFromDims(const int ndim, const int64_t* dims,
                                  int64_t* index) {
  for (int i = ndim - 1; i >= 0; --i) {
    ++index[i];
    if (index[i] >= dims[i]) {
      index[i] -= dims[i];
    } else {
      break;
    }
  }
}

template <typename DeviceContext, typename T>
void MatMulFunction(const Tensor* X, const Tensor* Y,
                    const std::vector<std::int64_t>& x_dims,
                    const std::vector<std::int64_t>& y_dims, Tensor* Out,
                    bool trans_x, bool trans_y,
                    const paddle::framework::ExecutionContext& ctx) {
  const int x_ndim = x_dims.size();
  const int y_ndim = y_dims.size();

  // get data ptr
  const T* x_data = X->data<T>();
  const T* y_data = Y->data<T>();

  if (x_ndim == 1 && y_ndim == 1) {
132 133 134 135 136 137 138
    PADDLE_ENFORCE_EQ(
        X->numel(), Y->numel(),
        platform::errors::InvalidArgument(
            "X's numbers must be equal to Y's numbers,"
            "when X/Y's dims =1. But received X has [%d] elements,"
            "received Y has [%d] elements",
            X->numel(), Y->numel()));
S
ShenLiang 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    VLOG(3) << "MatMul's case 1";
    Out->Resize({1});
    Out->mutable_data<T>(ctx.GetPlace());
    auto out_eigen = framework::EigenScalar<T>::From(*Out);
    auto x_eigen = framework::EigenVector<T>::Flatten(*X);
    auto y_eigen = framework::EigenVector<T>::Flatten(*Y);

    auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
    out_eigen.device(dev) = (x_eigen * y_eigen).sum();
    return;
  }

  auto& dev_ctx = ctx.template device_context<DeviceContext>();
  auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);

  if (x_ndim == 1) {
    const int N = X->numel();
    if (trans_y) {
157 158 159 160 161 162
      PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], N,
                        platform::errors::InvalidArgument(
                            "Input(Y) has error dim."
                            "Y'dims[%d] must be equal to %d"
                            "But received Y'dims[%d] is %d",
                            y_ndim - 1, N, y_ndim - 1, y_dims[y_ndim - 1]));
S
ShenLiang 已提交
163
    } else {
164 165 166 167 168 169
      PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], N,
                        platform::errors::InvalidArgument(
                            "Input(Y) has error dim."
                            "Y'dims[%d] must be equal to %d"
                            "But received Y'dims[%d] is %d",
                            y_ndim - 2, N, y_ndim - 2, y_dims[y_ndim - 2]));
S
ShenLiang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
    }
    std::vector<std::int64_t> out_dims(y_ndim - 1);
    if (trans_y) {
      std::copy_n(y_dims.cbegin(), y_ndim - 1, out_dims.begin());
    } else {
      std::copy_n(y_dims.cbegin(), y_ndim - 2, out_dims.begin());
      out_dims.back() = y_dims.back();
    }
    Out->Resize(framework::make_ddim(out_dims));
    Out->mutable_data<T>(ctx.GetPlace());
    if (trans_y) {
      const int M = Y->numel() / N;
      VLOG(3) << "MatMul's case 2";
S
ShenLiang 已提交
183 184
      blas.GEMV(false, M, N, static_cast<T>(1), y_data, x_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
185 186 187 188 189
    } else {
      const int M = y_dims[y_ndim - 1];
      const int batch_size = Y->numel() / (M * N);
      if (batch_size == 1) {
        VLOG(3) << "MatMul's case 3";
S
ShenLiang 已提交
190 191
        blas.GEMV(true, N, M, static_cast<T>(1), y_data, x_data,
                  static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
192 193
      } else {
        VLOG(3) << "MatMul's case 4";
S
ShenLiang 已提交
194 195 196
        blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast<T>(1),
                         y_data, x_data, static_cast<T>(0), Out->data<T>(),
                         batch_size, M * N, 0);
S
ShenLiang 已提交
197 198 199 200 201 202 203 204
      }
    }
    return;
  }

  if (y_ndim == 1) {
    const int N = Y->numel();
    if (trans_x) {
205 206 207 208 209 210
      PADDLE_ENFORCE_EQ(x_dims[x_ndim - 2], N,
                        platform::errors::InvalidArgument(
                            "Input(X) has error dim."
                            "X'dims[%d] must be equal to %d"
                            "But received X'dims[%d] is %d",
                            x_ndim - 2, N, x_ndim - 2, x_dims[x_ndim - 2]));
S
ShenLiang 已提交
211
    } else {
212 213 214 215 216 217
      PADDLE_ENFORCE_EQ(x_dims[x_ndim - 1], N,
                        platform::errors::InvalidArgument(
                            "Input(X) has error dim."
                            "X'dims[%d] must be equal to %d"
                            "But received X'dims[%d] is %d",
                            x_ndim - 1, N, x_ndim - 1, x_dims[x_ndim - 1]));
S
ShenLiang 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    }
    std::vector<std::int64_t> out_dims(x_ndim - 1);
    if (trans_x) {
      std::copy_n(x_dims.cbegin(), x_ndim - 2, out_dims.begin());
      out_dims.back() = x_dims.back();
    } else {
      std::copy_n(x_dims.cbegin(), x_ndim - 1, out_dims.begin());
    }
    Out->Resize(framework::make_ddim(out_dims));
    Out->mutable_data<T>(ctx.GetPlace());

    if (trans_x) {
      const int M = x_dims[x_ndim - 1];
      const int batch_size = X->numel() / (M * N);
      if (batch_size == 1) {
        VLOG(3) << "MatMul's case 5";
S
ShenLiang 已提交
234 235
        blas.GEMV(true, N, M, static_cast<T>(1), x_data, y_data,
                  static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
236 237
      } else {
        VLOG(3) << "MatMul's case 6";
S
ShenLiang 已提交
238 239 240
        blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast<T>(1),
                         x_data, y_data, static_cast<T>(0), Out->data<T>(),
                         batch_size, M * N, 0);
S
ShenLiang 已提交
241 242 243 244
      }
    } else {
      const int M = X->numel() / N;
      VLOG(3) << "MatMul's case 7";
S
ShenLiang 已提交
245 246
      blas.GEMV(false, M, N, static_cast<T>(1), x_data, y_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
247 248 249 250 251 252 253
    }
    return;
  }

  const int M = trans_x ? x_dims[x_ndim - 1] : x_dims[x_ndim - 2];
  const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1];
  if (trans_y) {
254 255 256 257 258 259
    PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], K,
                      platform::errors::InvalidArgument(
                          "Input(Y) has error dim."
                          "Y'dims[%d] must be equal to %d"
                          "But received Y'dims[%d] is %d",
                          y_ndim - 1, K, y_ndim - 1, y_dims[y_ndim - 1]));
S
ShenLiang 已提交
260
  } else {
261 262 263 264 265 266
    PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], K,
                      platform::errors::InvalidArgument(
                          "Input(Y) has error dim."
                          "Y'dims[%d] must be equal to %d"
                          "But received Y'dims[%d] is %d",
                          y_ndim - 2, K, y_ndim - 2, y_dims[y_ndim - 2]));
S
ShenLiang 已提交
267 268
  }
  const int N = trans_y ? y_dims[y_ndim - 2] : y_dims[y_ndim - 1];
W
wanghuancoder 已提交
269
  const int ndim = (std::max)(x_ndim, y_ndim);
S
ShenLiang 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
  std::vector<std::int64_t> x_broadcast_dims(ndim);
  std::vector<std::int64_t> y_broadcast_dims(ndim);
  std::vector<std::int64_t> out_broadcast_dims(ndim);

  GetBroadcastFromDims(x_ndim - 2, x_dims.data(), y_ndim - 2, y_dims.data(),
                       x_broadcast_dims.data(), y_broadcast_dims.data(),
                       out_broadcast_dims.data());

  out_broadcast_dims[ndim - 2] = M;
  out_broadcast_dims[ndim - 1] = N;

  Out->Resize(framework::make_ddim(out_broadcast_dims));
  Out->mutable_data<T>(ctx.GetPlace());

  const int batch_dim = ndim - 2;
  // broadcast message
  const bool is_broadcast_dims = !std::equal(
      x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim,
      y_broadcast_dims.cbegin());

  const std::int64_t x_batch_size = std::accumulate(
      x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  const std::int64_t y_batch_size = std::accumulate(
      y_broadcast_dims.cbegin(), y_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  const std::int64_t out_batch_size = std::accumulate(
      out_broadcast_dims.cbegin(), out_broadcast_dims.cbegin() + batch_dim, 1LL,
      std::multiplies<std::int64_t>());
  if (out_batch_size == 0) return;
  if (x_batch_size == 1 && y_batch_size == 1) {
    VLOG(3) << "MatMul's case 8";
    blas.GEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
303 304
              trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast<T>(1),
              x_data, y_data, static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
305 306 307
  } else if (x_batch_size == 1) {
    if (M == 1 && trans_y) {
      VLOG(3) << "MatMul's case 9";
S
ShenLiang 已提交
308 309
      blas.GEMV(false, y_batch_size * N, K, static_cast<T>(1), y_data, x_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
310 311 312
    } else {
      VLOG(3) << "MatMul's case 10";
      blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
313 314 315
                       trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                       static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                       Out->data<T>(), out_batch_size, 0, K * N);
S
ShenLiang 已提交
316 317 318 319 320
    }
  } else if (y_batch_size == 1) {
    if (!trans_x) {
      VLOG(3) << "MatMul's case 11";
      blas.GEMM(CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
321 322
                x_batch_size * M, N, K, static_cast<T>(1), x_data, y_data,
                static_cast<T>(0), Out->data<T>());
S
ShenLiang 已提交
323 324 325
    } else {
      VLOG(3) << "MatMul's case 12";
      blas.BatchedGEMM(CblasTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K,
S
ShenLiang 已提交
326 327
                       static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                       Out->data<T>(), out_batch_size, M * K, 0);
S
ShenLiang 已提交
328 329 330 331
    }
  } else if (!is_broadcast_dims) {
    VLOG(3) << "MatMul's case 13";
    blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
332 333 334
                     trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                     static_cast<T>(1), x_data, y_data, static_cast<T>(0),
                     Out->data<T>(), out_batch_size, M * K, K * N);
S
ShenLiang 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
  } else {
    // in the case, can't use stridedgemm
    std::vector<const T*> x_ptr(out_batch_size);
    std::vector<const T*> y_ptr(out_batch_size);
    std::vector<T*> out_ptr(out_batch_size);
    std::vector<std::int64_t> index(batch_dim, 0);
    for (std::int64_t i = 0; i < out_batch_size; ++i) {
      // using the index to get offset
      const std::int64_t x_index =
          GetIndexMessage(batch_dim, x_broadcast_dims.data(), index.data());
      const std::int64_t y_index =
          GetIndexMessage(batch_dim, y_broadcast_dims.data(), index.data());

      x_ptr[i] = x_data + x_index * M * K;
      y_ptr[i] = y_data + y_index * K * N;
      out_ptr[i] = Out->data<T>() + i * M * N;
      IndexIncreaseFromDims(batch_dim, out_broadcast_dims.data(), index.data());
    }
    VLOG(3) << "MatMul's case 14";
    blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans,
S
ShenLiang 已提交
355 356 357
                     trans_y ? CblasTrans : CblasNoTrans, M, N, K,
                     static_cast<T>(1), x_ptr.data(), y_ptr.data(),
                     static_cast<T>(0), out_ptr.data(), out_batch_size);
S
ShenLiang 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
  }
}

template <typename DeviceContext, typename T>
void MatMulFunction(const Tensor* X, const Tensor* Y, Tensor* Out, bool trans_x,
                    bool trans_y,
                    const paddle::framework::ExecutionContext& ctx) {
  const std::vector<std::int64_t> x_dims = vectorize(X->dims());
  const std::vector<std::int64_t> y_dims = vectorize(Y->dims());
  MatMulFunction<DeviceContext, T>(X, Y, x_dims, y_dims, Out, trans_x, trans_y,
                                   ctx);
}

template <typename DeviceContext, typename T>
class MatMulV2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<Tensor>("X");
    auto* Y = ctx.Input<Tensor>("Y");
    auto* Out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
    MatMulFunction<DeviceContext, T>(X, Y, Out, trans_x, trans_y, ctx);
  }
};

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static framework::Tensor FoldInitDims(const framework::Tensor& input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
static framework::Tensor FoldHeadAndLastDims(const DeviceContext& context,
                                             const framework::Tensor& input) {
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
  math::Transpose<DeviceContext, T, 3> trans;
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
  return output;
}

/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
static framework::DDim RowMatrixFromVector(const framework::DDim& x_dim) {
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
static framework::DDim ColumnMatrixFromVector(const framework::DDim& y_dim) {
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
    framework::Tensor* x, const math::MatDescriptor& descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

static void ReshapeXYOutIntoMatrixSequence(framework::Tensor* x,
                                           framework::Tensor* y,
                                           framework::Tensor* out, bool trans_x,
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({(std::max)(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

C
chentianyu03 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
template <typename DeviceContext, typename T>
struct ConjHelper {
  explicit ConjHelper(const framework::ExecutionContext& ctx) : ctx_(ctx) {}
  HOSTDEVICE void operator()(framework::Tensor& src, framework::Tensor& dst) {
    dst.Resize(src.dims());
    dst.set_layout(src.layout());
    dst.ShareDataWith(src);
    return;
  }

  const framework::ExecutionContext& ctx_;
};

template <typename DeviceContext>
struct ConjHelper<DeviceContext, paddle::platform::complex64> {
  explicit ConjHelper(const framework::ExecutionContext& ctx) : ctx_(ctx) {}

  HOSTDEVICE void operator()(framework::Tensor& src, framework::Tensor& dst) {
    dst.Resize(src.dims());
    auto* src_data = src.data<paddle::platform::complex64>();
    auto* dst_data = dst.mutable_data<paddle::platform::complex64>(
        ctx_.GetPlace(),
        size_t(src.numel() * sizeof(paddle::platform::complex64)));

    platform::ForRange<DeviceContext> for_range(
        ctx_.template device_context<DeviceContext>(), src.numel());
    math::ConjFunctor<paddle::platform::complex64> functor(
        src_data, src.numel(), dst_data);
    for_range(functor);
    return;
  }
  const framework::ExecutionContext& ctx_;
};

template <typename DeviceContext>
struct ConjHelper<DeviceContext, paddle::platform::complex128> {
  explicit ConjHelper(const framework::ExecutionContext& ctx) : ctx_(ctx) {}

  HOSTDEVICE void operator()(framework::Tensor& src, framework::Tensor& dst) {
    dst.Resize(src.dims());
    auto* src_data = src.data<paddle::platform::complex128>();
    auto* dst_data = dst.mutable_data<paddle::platform::complex128>(
        ctx_.GetPlace(),
        size_t(src.numel() * sizeof(paddle::platform::complex128)));

    platform::ForRange<DeviceContext> for_range(
        ctx_.template device_context<DeviceContext>(), src.numel());
    math::ConjFunctor<paddle::platform::complex128> functor(
        src_data, src.numel(), dst_data);
    for_range(functor);
    return;
  }
  const framework::ExecutionContext& ctx_;
};

S
ShenLiang 已提交
532 533 534
template <typename DeviceContext, typename T>
class MatMulV2GradKernel : public framework::OpKernel<T> {
 public:
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
  void MatMul(const framework::ExecutionContext& context,
              const framework::Tensor& a, bool trans_a,
              const framework::Tensor& b, bool trans_b,
              framework::Tensor* out) const {
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
    if (a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, static_cast<T>(1), out,
                static_cast<T>(0));
  }

  void CalcInputGrad(const framework::ExecutionContext& context,
                     const framework::Tensor& a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor& b,
                     bool trans_b, bool is_fold_init_dims_b,
                     framework::Tensor* out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
      auto& ctx = context.template device_context<DeviceContext>();
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

S
ShenLiang 已提交
576
  void Compute(const framework::ExecutionContext& ctx) const override {
577 578 579 580 581 582
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");

    auto x = *ctx.Input<framework::Tensor>("X");
    auto y = *ctx.Input<framework::Tensor>("Y");
    auto dout = *ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
C
chentianyu03 已提交
583 584
    framework::Tensor y_conj(y.type());
    framework::Tensor x_conj(y.type());
S
ShenLiang 已提交
585 586

    // get dims
587 588 589
    std::vector<std::int64_t> x_dims = vectorize(x.dims());
    std::vector<std::int64_t> y_dims = vectorize(y.dims());
    std::vector<std::int64_t> dout_dims = vectorize(dout.dims());
S
ShenLiang 已提交
590 591 592 593 594 595 596 597

    int x_ndim = x_dims.size();
    int y_ndim = y_dims.size();
    int ndim = dout_dims.size();

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

598
    // Case1 : x's or y's dim = 1
S
ShenLiang 已提交
599 600 601
    if (x_ndim == 1 && y_ndim == 1) {
      if (dx) dx->mutable_data<T>(ctx.GetPlace());
      if (dy) dy->mutable_data<T>(ctx.GetPlace());
602
      if (dout.numel() == 1) {
C
chentianyu03 已提交
603
        DotGradFunction<DeviceContext, T>()(&x, &y, &dout, dx, dy, ctx);
S
ShenLiang 已提交
604 605 606 607
        return;
      }
    }

608 609 610 611 612 613 614 615
    bool is_broadcast = true;
    if (x_ndim <= 2 || y_ndim <= 2) {
      is_broadcast = false;
    } else if (x_ndim != y_ndim) {
      is_broadcast = true;
    } else {
      is_broadcast = !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_ndim - 2,
                                 y_dims.cbegin());
S
ShenLiang 已提交
616 617
    }

618 619 620 621 622 623 624 625 626 627
    // Case2: no broadcast or no batch size, it aims to speed and it is same as
    // matmul in old version.
    if (!is_broadcast) {
      ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
      framework::DDim dx_dims;
      if (dx) {
        dx_dims = dx->dims();
        if (dx_dims != x.dims()) {
          dx->Resize(x.dims());
        }
C
chentianyu03 已提交
628 629 630 631

        // for complex
        ConjHelper<DeviceContext, T> conj_helper(ctx);
        conj_helper(y, y_conj);
632 633 634 635 636 637 638 639
      }

      framework::DDim dy_dims;
      if (dy) {
        dy_dims = dy->dims();
        if (dy_dims != y.dims()) {
          dy->Resize(y.dims());
        }
C
chentianyu03 已提交
640 641 642 643

        // for complex
        ConjHelper<DeviceContext, T> conj_helper(ctx);
        conj_helper(x, x_conj);
644 645
      }
      if (transpose_x && transpose_y) {
C
chentianyu03 已提交
646 647
        CalcInputGrad(ctx, y_conj, true, true, dout, true, false, dx);
        CalcInputGrad(ctx, dout, true, true, x_conj, true, false, dy);
648
      } else if (transpose_x) {
C
chentianyu03 已提交
649 650
        CalcInputGrad(ctx, y_conj, false, false, dout, true, false, dx);
        CalcInputGrad(ctx, x_conj, false, false, dout, false, true, dy);
651
      } else if (transpose_y) {
C
chentianyu03 已提交
652 653
        CalcInputGrad(ctx, dout, false, false, y_conj, false, true, dx);
        CalcInputGrad(ctx, dout, true, true, x_conj, false, true, dy);
S
ShenLiang 已提交
654
      } else {
C
chentianyu03 已提交
655 656
        CalcInputGrad(ctx, dout, false, false, y_conj, true, false, dx);
        CalcInputGrad(ctx, x_conj, true, true, dout, false, true, dy);
657 658 659 660 661 662 663 664 665 666 667
      }

      if (dx) {
        if (dx_dims != x.dims()) {
          dx->Resize(dx_dims);
        }
      }
      if (dy) {
        if (dy_dims != y.dims()) {
          dy->Resize(dy_dims);
        }
S
ShenLiang 已提交
668 669
      }
    } else {
670 671 672 673 674
      // Case3: broadcast. It need cost much time to reduce sum for the
      // broadcast and wastes the memory.
      // So we should avoid the case in reality.
      VLOG(3) << "It need cost much time to reduce sum for the broadcast and "
                 "wastes the memory. So we should avoid the case in reality";
675
      Tensor dx_help, dy_help;
C
chentianyu03 已提交
676 677 678 679

      ConjHelper<DeviceContext, T> conj_helper(ctx);
      conj_helper(x, x_conj);
      conj_helper(y, y_conj);
680 681 682 683
      if (transpose_x) {
        if (transpose_y) {
          // X'Y': dA = Y'G', dB = G'X'
          if (dx)
C
chentianyu03 已提交
684
            MatMulFunction<DeviceContext, T>(&y_conj, &dout, y_dims, dout_dims,
685
                                             &dx_help, true, true, ctx);
686
          if (dy)
C
chentianyu03 已提交
687
            MatMulFunction<DeviceContext, T>(&dout, &x_conj, dout_dims, x_dims,
688
                                             &dy_help, true, true, ctx);
689 690 691
        } else {
          // X'Y: dX = YG', dY = XG
          if (dx)
C
chentianyu03 已提交
692
            MatMulFunction<DeviceContext, T>(&y_conj, &dout, y_dims, dout_dims,
693
                                             &dx_help, false, true, ctx);
694
          if (dy)
C
chentianyu03 已提交
695
            MatMulFunction<DeviceContext, T>(&x_conj, &dout, x_dims, dout_dims,
696
                                             &dy_help, false, false, ctx);
697
        }
S
ShenLiang 已提交
698
      } else {
699 700 701
        if (transpose_y) {
          // XY': dX = GY, dY = G'X
          if (dx)
C
chentianyu03 已提交
702
            MatMulFunction<DeviceContext, T>(&dout, &y_conj, dout_dims, y_dims,
703
                                             &dx_help, false, false, ctx);
704
          if (dy)
C
chentianyu03 已提交
705
            MatMulFunction<DeviceContext, T>(&dout, &x_conj, dout_dims, x_dims,
706
                                             &dy_help, true, false, ctx);
707 708 709
        } else {
          // XY: dX = GY', dY = X'G
          if (dx)
C
chentianyu03 已提交
710
            MatMulFunction<DeviceContext, T>(&dout, &y_conj, dout_dims, y_dims,
711
                                             &dx_help, false, true, ctx);
712
          if (dy)
C
chentianyu03 已提交
713
            MatMulFunction<DeviceContext, T>(&x_conj, &dout, x_dims, dout_dims,
714
                                             &dy_help, true, false, ctx);
715
        }
S
ShenLiang 已提交
716
      }
717 718

      // get help dims
719 720
      const std::vector<std::int64_t> dx_help_dims = vectorize(dx_help.dims());
      const std::vector<std::int64_t> dy_help_dims = vectorize(dy_help.dims());
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

      std::vector<std::int64_t> dx_broadcast_dims(ndim);
      std::vector<std::int64_t> dy_broadcast_dims(ndim);

      std::fill(dx_broadcast_dims.data(),
                dx_broadcast_dims.data() + ndim - x_ndim, 1);
      std::fill(dy_broadcast_dims.data(),
                dy_broadcast_dims.data() + ndim - y_ndim, 1);
      std::copy(x_dims.data(), x_dims.data() + x_ndim,
                dx_broadcast_dims.data() + ndim - x_ndim);
      std::copy(y_dims.data(), y_dims.data() + y_ndim,
                dy_broadcast_dims.data() + ndim - y_ndim);

      std::vector<int> dx_reduce_dims;
      std::vector<int> dy_reduce_dims;
      for (int idx = 0; idx <= ndim - 3; idx++) {
        if (dx_help_dims[idx] != 1 && dx_broadcast_dims[idx] == 1) {
          dx_reduce_dims.push_back(idx);
        }
        if (dy_help_dims[idx] != 1 && dy_broadcast_dims[idx] == 1) {
          dy_reduce_dims.push_back(idx);
        }
S
ShenLiang 已提交
743
      }
744 745
      // reduce sum to get grad by ReduceSum
      if (dx) {
746 747 748 749 750 751
        if (dx_reduce_dims.empty()) {
          *dx = std::move(dx_help);
        } else {
          ReduceSumForMatmulGrad<DeviceContext, T>(&dx_help, dx, dx_reduce_dims,
                                                   ctx);
        }
752 753 754
        dx->Resize(x.dims());
      }
      if (dy) {
755 756 757 758 759 760
        if (dy_reduce_dims.empty()) {
          *dy = std::move(dy_help);
        } else {
          ReduceSumForMatmulGrad<DeviceContext, T>(&dy_help, dy, dy_reduce_dims,
                                                   ctx);
        }
761
        dy->Resize(y.dims());
S
ShenLiang 已提交
762 763 764 765 766 767 768
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle