MulOp.cpp 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MulOp.h"
16 17
/// todo(tianbing), delete it
#include <iostream>
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "paddle/math/MathFunctions.h"
#include "paddle/math/SIMDFunctions.h"
#include "paddle/utils/ThreadLocal.h"

#ifndef PADDLE_TYPE_DOUBLE
#define GEMM paddle::gemm<float>
#else
#define GEMM paddle::gemm<double>
#endif

namespace {
inline void vecAddTo(real* a, const real* b, size_t len) {
  for (unsigned int i = 0; i < len; ++i) {
    a[i] += b[i];
  }
}

inline void vecAddTo(real* a, const real* b, real scaleB, size_t len) {
  for (unsigned int i = 0; i < len; ++i) {
    a[i] += scaleB * b[i];
  }
}

inline void colVecAddTo(
    real* a, real* b, real c, size_t len, size_t aWidth, size_t bWidth) {
  for (unsigned int i = 0; i < len; ++i) {
    a[i * aWidth] += b[i * bWidth] * c;
  }
}
}  // namespace
48 49

namespace paddle {
50 51 52 53 54 55 56 57 58
template <>
void MulOp<DEVICE_TYPE_CPU>(CpuSparseMatrix& out,
                            const CpuMatrix& a,
                            const CpuMatrix& b,
                            real scaleAB,
                            real scaleT) {
  /// todo(tianbing), clean the code
  CHECK(!out.isTransposed()) << "Not supported";
  CHECK_EQ(out.getValueType(), FLOAT_VALUE);
X
xutianbing 已提交
59 60 61 62 63 64
  CHECK(!a.isTransposed() || !b.isTransposed())
      << "Not support both a and b are transpose matrices";
  if (!a.isTransposed() && b.isTransposed()) {
    CHECK(out.getFormat() != SPARSE_CSC)
        << "Not supported CSC format when a is not trans and b is trans";
  }
65

X
xutianbing 已提交
66 67 68
  if (scaleT == 0) {
    out.zeroMem();
  }
69 70 71 72 73 74 75 76 77
  const real* A = a.getData();
  const real* B = b.getData();
  real* C = out.getValue();
  int* rows = out.getRows();
  int* cols = out.getCols();
  size_t height = out.getHeight();
  size_t width = out.getWidth();

  if (!a.isTransposed() && !b.isTransposed()) {
X
xutianbing 已提交
78 79
    CHECK(b.getHeight() == a.getWidth() && a.getHeight() == height &&
          b.getWidth() == width);
80 81 82 83 84 85 86 87 88 89 90 91 92 93
    size_t m = a.getWidth();
    if (out.getFormat() == SPARSE_CSC) {
      for (size_t i = 0; i < width; i++) {
        size_t start = out.getColStartIdx(i);
        size_t end = out.getColStartIdx(i + 1);
        for (size_t j = start; j < end; j++) {
          real sum = 0;
          size_t rowIdx = rows[j];
          for (size_t k = 0; k < m; k++) {
            sum += A[rowIdx * m + k] * B[k * width + i];
          }
          C[j] = scaleAB * sum + scaleT * C[j];
        }
      }
X
xutianbing 已提交
94
    } else {  /// out.getFormat() == SPARSE_CSR
95 96 97 98 99 100
      for (size_t i = 0; i < height; i++) {
        size_t start = out.getRowStartIdx(i);
        size_t end = out.getRowStartIdx(i + 1);
        for (size_t j = start; j < end; j++) {
          real sum = 0;
          size_t colIdx = cols[j];
X
xutianbing 已提交
101
          for (size_t k = 0; k < a.getWidth(); k++) {
102 103 104 105 106 107
            sum += A[i * m + k] * B[k * width + colIdx];
          }
          C[j] = scaleAB * sum + scaleT * C[j];
        }
      }
    }
X
xutianbing 已提交
108 109
    return;
  }
110

X
xutianbing 已提交
111 112 113 114
  if (a.isTransposed() && !b.isTransposed()) {
    CHECK(a.getHeight() == b.getHeight() && b.getWidth() == width &&
          a.getWidth() == height);
    size_t m = a.getHeight();
115 116 117 118 119 120 121 122 123 124 125 126 127
    if (out.getFormat() == SPARSE_CSC) {
      for (size_t i = 0; i < width; i++) {
        size_t start = out.getColStartIdx(i);
        size_t end = out.getColStartIdx(i + 1);
        for (size_t j = start; j < end; j++) {
          real sum = 0;
          size_t rowIdx = rows[j];
          for (size_t k = 0; k < m; k++) {
            sum += A[k * height + rowIdx] * B[k * width + i];
          }
          C[j] = scaleAB * sum + scaleT * C[j];
        }
      }
X
xutianbing 已提交
128
    } else {  /// out.getFormat() == SPARSE_CSR
129 130 131 132 133 134
      for (size_t i = 0; i < height; i++) {
        int start = out.getRowStartIdx(i);
        int end = out.getRowStartIdx(i + 1);
        for (int j = start; j < end; j++) {
          real sum = 0;
          size_t colIdx = cols[j];
X
xutianbing 已提交
135
          for (size_t k = 0; k < a.getHeight(); k++) {
136 137 138 139 140 141
            sum += A[k * height + i] * B[k * width + colIdx];
          }
          C[j] = scaleAB * sum + scaleT * C[j];
        }
      }
    }
X
xutianbing 已提交
142 143 144 145 146 147
    return;
  }

  if (!a.isTransposed() && b.isTransposed()) {
    CHECK(b.getWidth() == a.getWidth() && a.getHeight() == height &&
          b.getHeight() == width);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    size_t m = a.getWidth();
    if (out.getFormat() == SPARSE_CSR) {
      for (size_t i = 0; i < height; i++) {
        size_t start = out.getRowStartIdx(i);
        size_t end = out.getRowStartIdx(i + 1);
        for (size_t j = start; j < end; j++) {
          real sum = 0;
          size_t colIdx = cols[j];
          for (size_t k = 0; k < m; k++) {
            sum += A[i * m + k] * B[colIdx * m + k];
          }
          C[j] = scaleAB * sum + scaleT * C[j];
        }
      }
    }
X
xutianbing 已提交
163
    return;
164 165 166 167 168 169 170 171 172
  }
}

template <>
void MulOp<DEVICE_TYPE_CPU>(CpuMatrix& out,
                            const CpuMatrix& a,
                            const CpuMatrix& b,
                            real scaleAB,
                            real scaleT) {
X
xutianbing 已提交
173 174 175 176 177 178 179
  CHECK(!out.isTransposed()) << "out matrix transpose not supported";
  CBLAS_TRANSPOSE aTrans = a.isTransposed() ? CblasTrans : CblasNoTrans;
  size_t aRow = a.isTransposed() ? a.getWidth() : a.getHeight();
  size_t aCol = a.isTransposed() ? a.getHeight() : a.getWidth();
  CBLAS_TRANSPOSE bTrans = b.isTransposed() ? CblasTrans : CblasNoTrans;
  size_t bRow = b.isTransposed() ? b.getWidth() : b.getHeight();
  size_t bCol = b.isTransposed() ? b.getHeight() : b.getWidth();
180 181 182 183 184 185

  /// C = A * B, for matrix format
  CHECK_EQ(aCol, bRow);
  CHECK_EQ(aRow, out.getHeight());
  CHECK_EQ(bCol, out.getWidth());

X
xutianbing 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198
  GEMM(aTrans,
       bTrans,
       out.getHeight(),
       out.getWidth(),
       aCol,
       scaleAB,
       a.getData(),
       a.getStride(),
       b.getData(),
       b.getStride(),
       scaleT,
       out.getData(),
       out.getStride());
199 200 201 202 203 204 205 206 207 208 209 210 211 212
}

template <>
void MulOp<DEVICE_TYPE_CPU>(CpuMatrix& out,
                            const CpuSparseMatrix& a,
                            const CpuMatrix& b,
                            real scaleAB,
                            real scaleT) {
  CHECK(!out.isTransposed()) << "Not supported";
  CHECK(!b.isTransposed()) << "Not supported";
  CHECK(scaleT == 0 || scaleT == 1) << "Not support";
  CHECK_EQ(scaleAB, static_cast<real>(1.0)) << "Not supported";
  CHECK_EQ(a.getFormat(), SPARSE_CSR) << "Not supported";

X
xutianbing 已提交
213 214 215 216 217 218 219
  if (!a.isTransposed()) {
    CHECK(b.getHeight() == a.getWidth() && a.getHeight() == out.getHeight() &&
          b.getWidth() == out.getWidth());
  } else {
    CHECK(b.getHeight() == a.getHeight() && a.getWidth() == out.getHeight() &&
          b.getWidth() == out.getWidth());
  }
220 221 222 223

  if (scaleT == 0) {
    out.zeroMem();
  }
X
xutianbing 已提交
224 225 226 227 228 229
  const real* B = b.getData();
  real* C = out.getData();
  if (out.getWidth() % 32 == 0) {
    CHECK_EQ((size_t)B % 32, 0UL);
    CHECK_EQ((size_t)C % 32, 0UL);
  }
230

X
xutianbing 已提交
231 232 233 234 235 236 237 238 239 240 241
  int* cols = a.getCols();
  real* values = a.getValue();
  for (size_t i = 0; i < a.getHeight(); ++i) {
    const int start = a.getRowStartIdx(i);
    const int end = a.getRowStartIdx(i + 1);
    for (int j = start; j < end; ++j) {
      vecAddTo(!a.isTransposed() ? out.getRow(i) : out.getRow(cols[j]),
               !a.isTransposed() ? const_cast<CpuMatrix&>(b).getRow(cols[j])
                                 : const_cast<CpuMatrix&>(b).getRow(i),
               (a.getValueType() == FLOAT_VALUE) ? values[j] : (real)1.0,
               out.getWidth());
242 243 244 245 246 247 248 249 250 251 252 253 254 255
    }
  }
}

template <>
void MulOp<DEVICE_TYPE_CPU>(CpuMatrix& out,
                            const CpuMatrix& a,
                            const CpuSparseMatrix& b,
                            real scaleAB,
                            real scaleT) {
  CHECK(!out.trans_) << "Not supported";
  CHECK(!a.isTransposed()) << "Not supported";
  CHECK(scaleT == 0 || scaleT == 1);
  CHECK_EQ(scaleAB, static_cast<real>(1.0));
X
xutianbing 已提交
256 257 258 259 260 261 262
  if (!b.isTransposed()) {  /// b is not Transpose
    CHECK(b.getHeight() == a.getWidth() && a.getHeight() == out.getHeight() &&
          b.getWidth() == out.getWidth());
  } else {
    CHECK(b.getHeight() == out.getWidth() && a.getHeight() == out.getHeight() &&
          b.getWidth() == a.getWidth());
  }
263

X
xutianbing 已提交
264 265 266
  if (scaleT == 0) {
    out.zeroMem();
  }
267 268 269 270 271 272
  real* A = const_cast<real*>(a.getData());
  real* B = const_cast<real*>(b.getValue());
  real* C = out.getData();
  int* rows = b.getRows();
  int* cols = b.getCols();

X
xutianbing 已提交
273
  /// b.getFormat() == SPARSE_CSC
274
  if (b.getFormat() == SPARSE_CSC) {
X
xutianbing 已提交
275 276 277 278 279 280 281 282 283 284
    for (size_t j = 0; j < b.getWidth(); ++j) {
      int start = b.getColStartIdx(j);
      int end = b.getColStartIdx(j + 1);
      for (int i = start; i < end; ++i) {
        colVecAddTo(!b.isTransposed() ? C + j : C + rows[i],
                    !b.isTransposed() ? A + rows[i] : A + j,
                    (b.getValueType() == NO_VALUE) ? (real)1.0 : B[i],
                    out.getHeight(),
                    out.getWidth(),
                    a.getWidth());
285 286
      }
    }
X
xutianbing 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    return;
  }

  /// b.getFormat() == SPARSE_CSR
  if (b.getFormat() == SPARSE_CSR) {
    for (size_t j = 0; j < b.getHeight(); ++j) {
      int start = b.getRowStartIdx(j);
      int end = b.getRowStartIdx(j + 1);
      for (int i = start; i < end; ++i) {
        colVecAddTo(!b.isTransposed() ? C + cols[i] : C + j,
                    !b.isTransposed() ? A + j : A + cols[i],
                    (b.getValueType() == NO_VALUE) ? (real)1.0 : B[i],
                    out.getHeight(),
                    out.getWidth(),
                    a.getWidth());
302 303
      }
    }
X
xutianbing 已提交
304
    return;
305 306
  }
}
307 308 309 310 311

/**
 * mul operator
 * out = scaleT * out + scaleAB*(in1 * in2)
 *
312 313 314
 * \param outputs[0]      output matrix, M * N
 * \param inputs[0]       first input (sparse) matrix,  M * K (if non-trans)
 * \param inputs[1]       second input matrix, K * N (if non-trans)
315 316 317 318 319
 */
template <DeviceType Device>
class MulFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
320 321
    alpha_ = config.get<real>("scaleAB");
    beta_ = config.get<real>("scaleT");
322 323 324
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
325 326
    CHECK_EQ((size_t)2, inputs.size());
    CHECK_EQ((size_t)1, outputs.size());
327 328 329 330
    CHECK(inputs[0].data() && inputs[1].data() && outputs[0].data());
    CHECK_EQ(inputs[0].shape().ndims(), (size_t)2);
    CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
    CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
331
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
332

333
    auto out_mat = outputs[0].matrix<Device>();
334 335 336
    /// matrix = matrix * matrix
    if (!inputs[0].isSparseArg() && !inputs[1].isSparseArg() &&
        !outputs[0].isSparseArg()) {
337 338 339 340 341 342
      MulOp<Device>(out_mat,
                    inputs[0].matrix<Device>(),
                    inputs[1].matrix<Device>(),
                    alpha_,
                    beta_);
      return;
343
    }
344

345 346 347
    /// matrix = matrix * sparse matrix
    if (!inputs[0].isSparseArg() && inputs[1].isSparseArg() &&
        !outputs[0].isSparseArg()) {
348 349 350 351 352 353 354 355
      MulOp<Device>(out_mat,
                    inputs[0].matrix<Device>(),
                    inputs[1].sparse().SparseMatrix<Device>(),
                    alpha_,
                    beta_);
      return;
    }

356 357 358
    /// matrix = sparse matrix * matrix
    if (inputs[0].isSparseArg() && !inputs[1].isSparseArg() &&
        !outputs[0].isSparseArg()) {
359 360 361 362 363 364
      MulOp<Device>(out_mat,
                    inputs[0].sparse().SparseMatrix<Device>(),
                    inputs[1].matrix<Device>(),
                    alpha_,
                    beta_);
      return;
365
    }
366 367 368 369 370 371 372 373 374 375 376 377

    /// sparse matrix = matrix * matrix
    auto out_sparse_mat = outputs[0].sparse().SparseMatrix<Device>();
    if (!inputs[0].isSparseArg() && !inputs[1].isSparseArg() &&
        outputs[0].isSparseArg()) {
      MulOp<Device>(out_sparse_mat,
                    inputs[0].matrix<Device>(),
                    inputs[1].matrix<Device>(),
                    alpha_,
                    beta_);
      return;
    }
378 379 380
  }

private:
381 382
  real alpha_;
  real beta_;
383 384
};

385
REGISTER_TYPED_FUNC(MulOp, CPU, MulFunc);
386 387 388 389
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(MulOp, GPU, MulFunc);
#endif
}  // namespace paddle