conv_transpose_kernel.cc 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/conv_transpose_kernel.h"

#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/phi/backends/onednn/onednn_helper.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/expect.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/funcs/data_layout_transform.h"

namespace phi {

inline dnnl::memory::dims GetWeightsTz(const phi::DenseTensor* filter,
                                       const int groups) {
  auto weights_tz = phi::vectorize(filter->dims());
  int g = std::max(groups, 1);
  int g_dim = (g > 1) ? 1 : 0;
  funcs::GetGroupConvWeightsTz(weights_tz, g);
  // gIOHW -> gOIHW || IOHW -> OIHW
  std::swap(weights_tz[g_dim + 0], weights_tz[g_dim + 1]);
  return weights_tz;
}

template <typename T, typename K, typename T_out>
class ConvTransposeOneDNNHandlerT
    : public funcs::OneDNNHandlerNoCachingT<T, dnnl::deconvolution_forward> {
 private:
  const bool is_test_;

 public:
  ConvTransposeOneDNNHandlerT(const OneDNNContext& dev_ctx,
                              const DenseTensor* x,
                              const DenseTensor* filter,
                              const DenseTensor* bias,
                              const std::vector<int>& strides_in,
                              const std::vector<int>& paddings_in,
                              const std::string& padding_algorithm,
                              int groups,
                              const std::vector<int>& dilations_in,
                              DenseTensor* out)
      : funcs::OneDNNHandlerNoCachingT<T, dnnl::deconvolution_forward>(
            dev_ctx.GetEngine(), dev_ctx.GetPlace()),
        is_test_(dev_ctx.HasDnnAttr("is_test")
                     ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("is_test"))
                     : false) {
    PADDLE_ENFORCE_EQ(is_test_,
                      true,
                      phi::errors::InvalidArgument(
                          "ConvTransposeOneDNN works only for inference. "
                          "The attribute \'is_test\' value should be set to "
                          "True, but got is_test=False."));

    PADDLE_ENFORCE_EQ(
        x->layout(),
        DataLayout::ONEDNN,
        phi::errors::InvalidArgument("Got wrong layout = %d for Input tensor.",
                                     x->layout()));

    PADDLE_ENFORCE_EQ(
        filter->layout(),
        DataLayout::ONEDNN,
        phi::errors::InvalidArgument(
            "The filter tensor's layout should be %d, but got %d.",
            DataLayout::ONEDNN,
            filter->layout()));

    PADDLE_ENFORCE_EQ(
        x->dims().size(),
        4,
        phi::errors::InvalidArgument("Input must be with 4 dimensions, "
                                     "i.e. NCHW. but got dimension =%d",
                                     x->dims().size()));
    PADDLE_ENFORCE_EQ(
        filter->dims().size(),
        4,
        phi::errors::InvalidArgument("Filter must be with 4 dimensions, "
                                     "i.e. OIHW, but got dimension =%d",
                                     filter->dims().size()));

    if (bias) {
      PADDLE_ENFORCE_EQ(
          bias->layout(),
          DataLayout::ONEDNN,
          phi::errors::InvalidArgument(
              "The bias tensor's laytout should be %d, but got %d.",
              DataLayout::ONEDNN,
              bias->layout()));

      PADDLE_ENFORCE_EQ(
          bias->dims().size(),
          1,
          phi::errors::InvalidArgument("Bias must only have 1 dimension, "
                                       "i.e. X, but got dimension = %d .",
                                       bias->dims().size()));
    }

    dnnl::memory::dims strides(begin(strides_in), end(strides_in));
    dnnl::memory::dims paddings(begin(paddings_in), end(paddings_in));
    dnnl::memory::dims dilations(begin(dilations_in), end(dilations_in));

    PADDLE_ENFORCE_EQ(
        strides.size(),
        2,
        phi::errors::Unimplemented(
            "Now we only support 2d oneDNN convolution transpose op"));

    const auto x_dims = x->dims();
    const auto x_data_dims = phi::slice_ddim(x_dims, 2, x_dims.size());
    const auto filter_dims = filter->dims();
    const auto filter_data_dims =
        phi::slice_ddim(filter_dims, 2, filter_dims.size());
    const auto ksize = phi::vectorize(filter_data_dims);
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, x_data_dims, strides, ksize);

    std::transform(
        dilations.begin(), dilations.end(), dilations.begin(), [](int64_t i) {
          return i - 1;
        });

    const auto src_tz = phi::vectorize(x->dims());
    const auto weights_tz = GetWeightsTz(filter, groups);
    const auto dst_tz = phi::vectorize(out->dims());
    const auto onednn_paddings = funcs::ToOneDNNPadding(paddings);

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
    auto chosen_memory_format = funcs::OneDNNMemoryFormat::any;
    auto data_type = dnnl::memory::data_type::f32;
    const bool is_BFLOAT16 =
        dev_ctx.HasDnnAttr("mkldnn_data_type")
            ? PADDLE_GET_CONST(std::string,
                               dev_ctx.GetDnnAttr("mkldnn_data_type")) ==
                  "bfloat16"
            : false;
    if (is_BFLOAT16 || std::is_same<T_out, dtype::bfloat16>::value) {
      data_type = dnnl::memory::data_type::bf16;
    }

    const auto src_md =
        funcs::OneDNNMemDesc(src_tz, data_type, chosen_memory_format);
    const auto weights_md =
        funcs::OneDNNMemDesc(weights_tz, data_type, chosen_memory_format);
    const auto dst_md = funcs::OneDNNMemDesc(
        dst_tz, funcs::OneDNNGetDataType<T_out>(), chosen_memory_format);

    auto fwd_prop_kind = is_test_ ? dnnl::prop_kind::forward_inference
                                  : dnnl::prop_kind::forward_training;

    if (bias) {
      std::vector<int64_t> bias_tz = phi::vectorize(bias->dims());
      const auto bias_md = funcs::OneDNNMemDesc(
          bias_tz, data_type, funcs::OneDNNMemoryFormat::x);
      this->AcquireForwardPrimitiveDescriptor(
          fwd_prop_kind,
          dnnl::algorithm::deconvolution_direct,
          src_md,
          weights_md,
          bias_md,
          dst_md,
          strides,
          dilations,
          onednn_paddings[0],
          onednn_paddings[1]);
    } else {
      this->AcquireForwardPrimitiveDescriptor(
          fwd_prop_kind,
          dnnl::algorithm::deconvolution_direct,
          src_md,
          weights_md,
          dst_md,
          strides,
          dilations,
          onednn_paddings[0],
          onednn_paddings[1]);
    }
  }

  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
      const phi::DenseTensor* x) {
    const T* input_data = x->data<T>();
    return funcs::OneDNNHandlerNoCachingT<T, dnnl::deconvolution_forward>::
        AcquireMemoryWithReorder(x->mem_desc(),
                                 this->fwd_pd_->src_desc(),
                                 funcs::to_void_cast<T>(input_data));
  }

  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
      const OneDNNContext& dev_ctx,
      const std::string& key,
      const phi::DenseTensor* filter,
      const int& groups) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = GetWeightsTz(filter, groups);
    int g = std::max(groups, 1);

    auto user_src_md =
        funcs::OneDNNMemDesc(weights_tz,
                             funcs::OneDNNGetDataType<K>(),
                             (g == 1) ? funcs::OneDNNMemoryFormat::iohw
                                      : funcs::OneDNNMemoryFormat::giohw);

    return this->template AcquireMemoryWithReorder<K>(
        dev_ctx,
        user_src_md,
        this->fwd_pd_->weights_desc(),
        funcs::to_void_cast<K>(filter_data),
        key,
        "@weights_mem_p",
        is_test_);
  }

  template <typename F = T>
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
      const OneDNNContext& dev_ctx,
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const std::string& key,
      const std::string& suffix,
      bool is_persistent = false,
      const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
    const auto target_key = key + suffix + "_target";
    const auto key_reorder_p = key + suffix + "reorder_p";
    const auto user_key = key + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(target_key));

    if (target_memory_p == nullptr) {
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
      if (user_md != target_md) {
        target_memory_p =
            std::make_shared<dnnl::memory>(target_md, this->engine_);
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (funcs::is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
          reorder_pdesc = dnnl::reorder::primitive_desc(
              *user_memory_p, *target_memory_p, attr);
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
        dev_ctx.SetBlob(key_reorder_p, reorder_p);

        auto& astream = OneDNNContext::tls().get_stream();
        paddle::platform::RecordEvent record_reorder(
            "int_reorder",
            paddle::platform::TracerEventType::UserDefined,
            1,
            paddle::platform::EventRole::kUniqueOp);
        reorder_p->execute(
            astream,
            {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx.SetBlob(user_key, user_memory_p);
      dev_ctx.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
      auto& astream = OneDNNContext::tls().get_stream();

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
      auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
          dev_ctx.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        paddle::platform::RecordEvent record_reorder(
            "int_reorder",
            paddle::platform::TracerEventType::UserDefined,
            1,
            paddle::platform::EventRole::kUniqueOp);
        reorder_p->execute(
            astream,
            {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
      const OneDNNContext& dev_ctx,
      const std::string& key,
      const phi::DenseTensor* bias) {
    const K* bias_data = bias->data<K>();
    auto user_bias_md = funcs::OneDNNMemDesc(phi::vectorize(bias->dims()),
                                             funcs::OneDNNGetDataType<K>(),
                                             funcs::OneDNNMemoryFormat::x);
    return this->AcquireMemoryWithReorder(dev_ctx,
                                          user_bias_md,
                                          this->fwd_pd_->bias_desc(),
                                          funcs::to_void_cast<K>(bias_data),
                                          key,
                                          "@bias_mem_p",
                                          is_test_);
  }
};

template <typename T, typename T_out>
void Execute(const OneDNNContext& dev_ctx,
             const DenseTensor* x,
             const DenseTensor* filter,
             const std::vector<int>& strides,
             const std::vector<int>& paddings,
             const std::string& padding_algorithm,
             int groups,
             const std::vector<int>& dilations,
             DenseTensor* out) {
  const auto* bias =
      dev_ctx.HasDnnInput("Bias") ? dev_ctx.GetDnnInput("Bias") : nullptr;

  ConvTransposeOneDNNHandlerT<T, float, T_out> handler(dev_ctx,
                                                       x,
                                                       filter,
                                                       bias,
                                                       strides,
                                                       paddings,
                                                       padding_algorithm,
                                                       groups,
                                                       dilations,
                                                       out);

  auto src_memory_p = handler.AcquireSrcMemoryWithReorder(x);
  // Caching Key for weights is needed
  std::string key =
      funcs::CreateKey(dev_ctx,
                       dev_ctx.GetInputsName("Input")[0],
                       dev_ctx.GetInputsName("Filter")[0],
                       (bias ? dev_ctx.GetInputsName("Bias")[0] : ""));
  key = funcs::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
  auto weights_memory_p =
      handler.AcquireWeightsMemoryWithReorder(dev_ctx, key, filter, groups);

  std::shared_ptr<dnnl::memory> dst_memory_p =
      handler.template AcquireDstMemory<T_out>(out);
  auto conv_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  if (bias) {
    auto bias_memory_p =
        handler.AcquireBiasMemoryWithReorder(dev_ctx, key, bias);
    args.insert({DNNL_ARG_BIAS, *bias_memory_p});
  }
  auto& astream = OneDNNContext::tls().get_stream();
  conv_p->execute(astream, args);
  astream.wait();
  out->set_mem_desc(dst_memory_p->get_desc());
}

template <typename T, typename Context>
void Conv2dTransposeKernel(const Context& dev_ctx,
                           const DenseTensor& x,
                           const DenseTensor& filter,
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
                           const std::vector<int>& output_padding,
                           const IntArray& output_size,
                           const std::string& padding_algorithm,
                           int groups,
                           const std::vector<int>& dilations,
                           const std::string& data_format,
                           DenseTensor* out) {
  PADDLE_ENFORCE_EQ(dev_ctx.GetPlace().GetType(),
                    AllocationType::CPU,
                    phi::errors::PreconditionNotMet(
                        "Operator oneDNN Conv must use CPUPlace"));

  const bool is_BFLOAT16 =
      dev_ctx.HasDnnAttr("mkldnn_data_type")
          ? PADDLE_GET_CONST(std::string,
                             dev_ctx.GetDnnAttr("mkldnn_data_type")) ==
                "bfloat16"
          : false;
  const bool force_fp32_output =
      dev_ctx.HasDnnAttr("force_fp32_output")
          ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("force_fp32_output"))
          : false;
  const bool use_bfloat16 = (!force_fp32_output && is_BFLOAT16);

  if (use_bfloat16) {
    Execute<T, dtype::bfloat16>(dev_ctx,
                                &x,
                                &filter,
                                strides,
                                paddings,
                                padding_algorithm,
                                groups,
                                dilations,
                                out);
  } else {
    Execute<T, float>(dev_ctx,
                      &x,
                      &filter,
                      strides,
                      paddings,
                      padding_algorithm,
                      groups,
                      dilations,
                      out);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(conv2d_transpose,
                   OneDNN,
                   ONEDNN,
                   phi::Conv2dTransposeKernel,
                   float,
                   phi::dtype::bfloat16) {}