test_cuda_graph.py 8.6 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
from paddle.device.cuda.graphs import CUDAGraph
import unittest
import numpy as np
20 21 22
import os
import pathlib
import shutil
23 24
from paddle.fluid.dygraph.base import switch_to_static_graph
from simple_nets import simple_fc_net_with_inputs
25 26


27 28 29 30
def can_use_cuda_graph():
    return paddle.is_compiled_with_cuda() and not paddle.is_compiled_with_rocm()


31
class TestCUDAGraph(unittest.TestCase):
32

33
    def setUp(self):
34 35
        if can_use_cuda_graph():
            paddle.set_flags({
36 37
                'FLAGS_allocator_strategy': 'auto_growth',
                'FLAGS_sync_nccl_allreduce': False,
38 39
                'FLAGS_cudnn_deterministic': True,
                'FLAGS_use_stream_safe_cuda_allocator': False,
40
            })
41 42 43

    def random_tensor(self, shape):
        return paddle.to_tensor(
44
            np.random.randint(low=0, high=10, size=shape).astype("float32"))
45

46 47
    @switch_to_static_graph
    def test_cuda_graph_static_graph(self):
48
        if not can_use_cuda_graph():
49 50 51
            return

        seed = 100
52 53
        loss_cuda_graph = self.cuda_graph_static_graph_main(seed,
                                                            use_cuda_graph=True)
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        loss_no_cuda_graph = self.cuda_graph_static_graph_main(
            seed, use_cuda_graph=False)
        self.assertEqual(loss_cuda_graph, loss_no_cuda_graph)

    def cuda_graph_static_graph_main(self, seed, use_cuda_graph):
        batch_size = 1
        class_num = 10
        image_shape = [batch_size, 784]
        label_shape = [batch_size, 1]

        paddle.seed(seed)
        np.random.seed(seed)
        startup = paddle.static.Program()
        main = paddle.static.Program()
        with paddle.static.program_guard(main, startup):
69 70 71 72 73 74
            image = paddle.static.data(name="image",
                                       shape=image_shape,
                                       dtype='float32')
            label = paddle.static.data(name="label",
                                       shape=label_shape,
                                       dtype='int64')
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
            image.persistable = True
            label.persistable = True
            loss = simple_fc_net_with_inputs(image, label, class_num)
            loss.persistable = True
            lr = paddle.optimizer.lr.PiecewiseDecay(
                boundaries=[2, 3, 4], values=[0.01, 0.02, 0.03, 0.04])
            optimizer = paddle.optimizer.SGD(learning_rate=lr)
            optimizer.minimize(loss)
        place = paddle.CUDAPlace(0)
        exe = paddle.static.Executor(place)
        scope = paddle.static.Scope()
        with paddle.static.scope_guard(scope):
            exe.run(startup)
            build_strategy = paddle.static.BuildStrategy()
            build_strategy.allow_cuda_graph_capture = True
            build_strategy.fix_op_run_order = True
            build_strategy.fuse_all_optimizer_ops = True
            compiled_program = paddle.static.CompiledProgram(
93 94 95
                main).with_data_parallel(loss_name=loss.name,
                                         build_strategy=build_strategy,
                                         places=place)
96 97 98 99 100 101 102 103 104 105
            image_t = scope.var(image.name).get_tensor()
            label_t = scope.var(label.name).get_tensor()
            loss_t = scope.var(loss.name).get_tensor()
            lr_var = main.global_block().var(lr._var_name)
            self.assertTrue(lr_var.persistable)
            lr_t = scope.var(lr_var.name).get_tensor()
            cuda_graph = None
            for batch_id in range(20):
                image_t.set(
                    np.random.rand(*image_shape).astype('float32'), place)
106 107 108 109 110
                label_t.set(
                    np.random.randint(low=0,
                                      high=class_num,
                                      size=label_shape,
                                      dtype='int64'), place)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

                if batch_id == 1 and use_cuda_graph:
                    cuda_graph = CUDAGraph(place, mode="global")
                    cuda_graph.capture_begin()
                    exe.run(compiled_program)
                    cuda_graph.capture_end()

                if cuda_graph:
                    lr_t.set(np.array([lr()], dtype='float32'), place)
                    cuda_graph.replay()
                else:
                    exe.run(compiled_program)
                lr.step()
            if cuda_graph:
                cuda_graph.reset()
        return np.array(loss_t)

    def test_cuda_graph_dynamic_graph(self):
129
        if not can_use_cuda_graph():
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
            return

        shape = [2, 3]
        x = self.random_tensor(shape)
        z = self.random_tensor(shape)

        g = CUDAGraph()
        g.capture_begin()
        y = x + 10
        z.add_(x)
        g.capture_end()

        for _ in range(10):
            z_np_init = z.numpy()
            x_new = self.random_tensor(shape)
            x.copy_(x_new, False)
            g.replay()
            x_np = x_new.numpy()
            y_np = y.numpy()
            z_np = z.numpy()
            self.assertTrue((y_np - x_np == 10).all())
            self.assertTrue((z_np - z_np_init == x_np).all())

        g.reset()

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    def test_concat_and_split(self):
        if not can_use_cuda_graph():
            return

        concat_num = 100
        xs = []
        xs_np = []

        for i in range(concat_num):
            x_np = np.random.random(size=[1]).astype(np.float32)
            xs.append(paddle.to_tensor(x_np))
            xs_np.append(x_np)

        graph = CUDAGraph()
        graph.capture_begin()
        y = paddle.concat(xs)
        zs = paddle.split(y, len(xs))
        graph.capture_end()
        graph.replay()

        y_np = y.numpy()
        y_np_expected = np.concatenate(xs_np)
        self.assertTrue(np.array_equal(y_np, y_np_expected))
        self.assertEqual(len(zs), len(xs_np))
        for i, z in enumerate(zs):
            self.assertTrue(np.array_equal(z.numpy(), xs_np[i]))

        output_dir = 'cuda_graph_dot_{}'.format(os.getpid())
        try:
            graph.print_to_dot_files(pathlib.Path(output_dir))
            graph.reset()
            shutil.rmtree(output_dir)
        except Exception as e:
            msg = str(e)
            sub_msg = "The print_to_dot_files() method is only supported when CUDA version >= 11.3"
            self.assertTrue(sub_msg in msg)
        finally:
            graph.reset()

194 195 196 197 198
    def test_dataloader(self):
        if not can_use_cuda_graph():
            return

        class AutoIncDataset(paddle.io.Dataset):
199

200 201 202 203 204 205 206 207 208 209 210 211 212
            def __init__(self, n, dtype):
                self.n = n
                self.dtype = dtype

            def __len__(self):
                return self.n

            def __getitem__(self, idx):
                return np.array([idx]).astype(self.dtype)

        n = 100
        dtype = 'int64'
        dataset = AutoIncDataset(n, dtype)
213 214 215 216
        data_loader = paddle.io.DataLoader(dataset,
                                           batch_size=1,
                                           num_workers=2,
                                           use_buffer_reader=True)
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        x = None
        y = None

        graph = None
        for i, data in enumerate(data_loader):
            if graph is None:
                x = data
                x = x.cuda()
                graph = CUDAGraph()
                graph.capture_begin()
                y = x * x
                graph.capture_end()
            else:
                x.copy_(data, False)
                x = x.cuda()

            graph.replay()
            actual_x = np.array([[i]]).astype(dtype)
            actual_y = np.array([[i * i]]).astype(dtype)
            self.assertTrue(np.array_equal(actual_x, x.numpy()))
            self.assertTrue(np.array_equal(actual_y, y.numpy()))

Y
Yuang Liu 已提交
239 240 241 242 243 244 245 246 247 248
    def test_dev_ctx_alloc(self):
        if not can_use_cuda_graph():
            return

        x = paddle.to_tensor([2], dtype='float32')
        graph = CUDAGraph()
        graph.capture_begin()
        y = paddle.cast(x, dtype='float16')
        graph.capture_end()

249 250 251

if __name__ == "__main__":
    unittest.main()