backward.yaml 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
- backward_api : atan2_grad
  forward : atan2 (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : atan2_grad

- backward_api : cholesky_grad
  forward : cholesky (Tensor x, bool upper) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, bool upper)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : cholesky_grad

- backward_api : cholesky_solve_grad
  forward : cholesky_solve (Tensor x, Tensor y, bool upper) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : cholesky_solve_grad

31 32 33 34 35 36 37 38 39 40 41
- backward_api : cross_grad
  forward : cross (Tensor x, Tensor y, int axis = 9) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : cross_grad
    data_type : out_grad

42 43 44 45 46 47 48 49 50 51 52 53
- backward_api : diag_grad
  forward : diag (Tensor x, int offset, float padding_value) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : diag_grad
    data_type : out_grad
  no_need_buffer : x

54 55 56 57 58 59 60 61 62 63 64 65
- backward_api : diagonal_grad
  forward : diagonal (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset = 0, int axis1 = 0, int axis2 = 1)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : diagonal_grad
    data_type : out_grad
  no_need_buffer : x

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
- backward_api : digamma_grad
  forward : digamma (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : digamma_grad

- backward_api : dist_grad
  forward : dist (Tensor x, Tensor y, float p) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, float p)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : dist_grad

- backward_api : dot_grad
  forward : dot (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : dot_grad
    data_type : out_grad

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
- backward_api : erf_grad
  forward : erf (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : erf_grad
    data_type : out_grad

- backward_api : mv_grad
  forward : mv (Tensor x, Tensor vec) -> Tensor(out)
  args : (Tensor x, Tensor vec, Tensor out_grad)
  output : Tensor(x_grad), Tensor(vec_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, vec]
  kernel :
    func : mv_grad

- backward_api : poisson_grad
  forward : poisson (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : poisson_grad

128 129 130 131 132 133 134 135 136 137
- backward_api : solve_grad
  forward : solve (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : solve_grad

138 139 140 141 142 143 144 145 146 147 148 149
- backward_api : trace_grad
  forward : trace (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset, int axis1, int axis2)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : trace_grad
    data_type : out_grad
  no_need_buffer : x

150 151 152 153 154 155 156 157 158
- backward_api : trunc_grad
  forward : trunc (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : trunc_grad