elementwise_op_npu_test.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef _WIN32
#include <unistd.h>
#endif

#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/string/printf.h"
28
#include "paddle/phi/kernels/funcs/math_function.h"
29 30 31 32

namespace f = paddle::framework;
namespace p = paddle::platform;

33
USE_OP_ITSELF(elementwise_add);
34
USE_OP_DEVICE_KERNEL(elementwise_add, NPU);
35
USE_OP_ITSELF(elementwise_sub);
36 37 38
USE_OP_DEVICE_KERNEL(elementwise_sub, NPU);

template <typename T>
39
void Compare(f::Scope *scope, const p::DeviceContext &ctx,
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
             std::string op_type) {
  // init
  auto x = scope->Var("X");
  auto tensor_x = x->GetMutable<f::LoDTensor>();

  auto y = scope->Var("Y");
  auto tensor_y = y->GetMutable<f::LoDTensor>();

  std::vector<T> init_x;
  for (int64_t i = 0; i < 10 * 10; ++i) {
    init_x.push_back(static_cast<T>(1.0));
  }

  std::vector<T> init_y;
  for (int64_t i = 0; i < 10 * 10; ++i) {
    init_y.push_back(static_cast<T>(2.0));
  }

58
  paddle::framework::TensorFromVector(init_x, ctx, tensor_x);
59
  tensor_x->Resize({10, 10});
60
  paddle::framework::TensorFromVector(init_y, ctx, tensor_y);
61 62 63 64 65 66 67 68 69 70 71 72 73 74
  tensor_y->Resize({10, 10});

  auto place = ctx.GetPlace();
  auto out = scope->Var("Out");
  auto tensor_out = out->GetMutable<f::LoDTensor>();

  // run
  f::AttributeMap attrs;
  auto op = f::OpRegistry::CreateOp(op_type, {{"X", {"X"}}, {"Y", {"Y"}}},
                                    {{"Out", {"Out"}}}, attrs);

  op->Run(*scope, place);

  std::vector<T> out_vec;
75
  paddle::framework::TensorToVector(*tensor_out, ctx, &out_vec);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

  ctx.Wait();
  float expected;
  if (op_type == "elementwise_add") {
    expected = 3.0;
  } else if (op_type == "elementwise_sub") {
    expected = -1.0;
  }
  EXPECT_EQ(out_vec.size(), init_x.size());
  for (uint32_t i = 0; i < out_vec.size(); i++) {
    EXPECT_EQ(out_vec[i], static_cast<T>(expected));
  }
}

template <typename T>
91
void CompareGrad(f::Scope *scope, const p::DeviceContext &ctx,
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
                 std::string op_type) {
  // init
  auto dout = scope->Var("DOut");
  auto tensor_dout = dout->GetMutable<f::LoDTensor>();
  tensor_dout->Resize({2, 3, 5});

  auto x = scope->Var("X");
  auto tensor_x = x->GetMutable<f::LoDTensor>();
  tensor_x->Resize({2, 3, 5});

  auto y = scope->Var("Y");
  auto tensor_y = y->GetMutable<f::LoDTensor>();
  tensor_y->Resize({1, 5});

  auto dx = scope->Var("DX");
  auto tensor_dx = dx->GetMutable<f::LoDTensor>();

  auto dy = scope->Var("DY");
  auto tensor_dy = dy->GetMutable<f::LoDTensor>();

  std::vector<T> init_dout;
  for (int64_t i = 0; i < tensor_dout->numel(); ++i) {
    init_dout.push_back(static_cast<T>(1.0));
  }

117
  paddle::framework::TensorFromVector(init_dout, ctx, tensor_dout);
118 119 120 121 122 123 124 125 126 127 128 129
  tensor_dout->Resize({2, 3, 5});

  // run
  f::AttributeMap attrs;
  auto op = f::OpRegistry::CreateOp(
      op_type, {{"Out@GRAD", {"DOut"}}, {"X", {"X"}}, {"Y", {"Y"}}},
      {{"X@GRAD", {"DX"}}, {"Y@GRAD", {"DY"}}}, attrs);

  auto place = ctx.GetPlace();
  op->Run(*scope, place);

  std::vector<T> dx_vec;
130
  paddle::framework::TensorToVector(*tensor_dx, ctx, &dx_vec);
131 132

  std::vector<T> dy_vec;
133
  paddle::framework::TensorToVector(*tensor_dy, ctx, &dy_vec);
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

  ctx.Wait();
  float expected_x, expected_y;
  if (op_type == "elementwise_add_grad") {
    expected_x = 1.0;
    expected_y = 6.0;
  } else if (op_type == "elementwise_sub_grad") {
    expected_x = 1.0;
    expected_y = -6.0;
  }

  for (uint32_t i = 0; i < dx_vec.size(); i++) {
    EXPECT_EQ(dx_vec[i], static_cast<T>(expected_x));
  }
  for (uint32_t i = 0; i < dy_vec.size(); i++) {
    EXPECT_EQ(dy_vec[i], static_cast<T>(expected_y));
  }
}

TEST(elementwise_add, NPU_fp32) {
  f::Scope scope;
155 156
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  Compare<float>(&scope, *ctx, "elementwise_add");
157 158 159 160
}

TEST(elementwise_sub, NPU_fp32) {
  f::Scope scope;
161 162
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  Compare<float>(&scope, *ctx, "elementwise_sub");
163 164 165 166
}

TEST(elementwise_sub, NPU_fp16) {
  f::Scope scope;
167 168
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  Compare<p::float16>(&scope, *ctx, "elementwise_sub");
169 170 171 172
}

TEST(elementwise_sub_grad, NPU) {
  f::Scope scope;
173 174
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  CompareGrad<float>(&scope, *ctx, "elementwise_sub_grad");
175
}
176 177 178

TEST(elementwise_add_grad, NPU) {
  f::Scope scope;
179 180
  auto *ctx = p::DeviceContextPool::Instance().Get(p::NPUPlace(0));
  CompareGrad<float>(&scope, *ctx, "elementwise_add_grad");
181
}