dropout_op_xpu.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
H
hong 已提交
11

12 13
#include <memory>
#include <string>
H
hong 已提交
14
#include "paddle/fluid/framework/op_registry.h"
15
#include "paddle/fluid/platform/device/device_wrapper.h"
16 17 18 19
namespace paddle {
namespace operators {

#ifdef PADDLE_WITH_XPU
20

H
hong 已提交
21
using Tensor = framework::Tensor;
22 23
template <typename DeviceContext, typename T>
class DropoutXPUKernel : public framework::OpKernel<T> {
24 25
  using XPUTyp = typename XPUTypeTrait<T>::Type;

26 27 28 29 30 31 32 33 34
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Output<Tensor>("Out");
    const auto* x_data = x->data<T>();
    auto* y_data = y->mutable_data<T>(context.GetPlace());
    float dropout_prob = context.Attr<float>("dropout_prob");
    auto dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
35 36
    auto& dev_ctx = context.template device_context<DeviceContext>();

37 38 39
    auto* seed =
        context.HasInput("Seed") ? context.Input<Tensor>("Seed") : nullptr;

40 41
    int is_upscale = (dropout_implementation == "upscale_in_train");

42
    if (!context.Attr<bool>("is_test")) {
43 44 45
      int seed_data = 0;
      if (seed) {
        seed_data = *(seed->data<int>());
46
      } else {
47 48
        seed_data =
            context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : 0;
49
      }
50

51 52
      auto* mask = context.Output<Tensor>("Mask");
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
53 54 55 56 57
      // Special case when dropout_prob is 1.0
      if (dropout_prob == 1.0f) {
        int r = xpu::constant(dev_ctx.x_context(),
                              reinterpret_cast<XPUTyp*>(y_data), y->numel(),
                              XPUTyp(0));
58
        PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
59 60 61
        r = xpu::constant(dev_ctx.x_context(),
                          reinterpret_cast<XPUTyp*>(mask_data), mask->numel(),
                          XPUTyp(0));
62
        PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
63
        return;
64
      }
65 66 67
      int r = xpu::dropout(dev_ctx.x_context(),
                           reinterpret_cast<const XPUTyp*>(x->data<T>()),
                           reinterpret_cast<XPUTyp*>(y->data<T>()),
68
                           reinterpret_cast<XPUTyp*>(mask_data), seed_data,
69
                           mask->numel(), is_upscale, dropout_prob);
70
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout");
71 72 73 74 75 76
    } else {
      float scale =
          (is_upscale) ? (1.0) : (static_cast<float>(1.0f - dropout_prob));
      int r = xpu::scale(
          dev_ctx.x_context(), reinterpret_cast<const XPUTyp*>(x_data),
          reinterpret_cast<XPUTyp*>(y_data), x->numel(), false, scale, 0.0f);
77
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
78 79 80 81 82
    }
  }
};
template <typename DeviceContext, typename T>
class DropoutGradXPUKernel : public framework::OpKernel<T> {
83
  using XPUType = typename XPUTypeTrait<T>::Type;
84

85 86
 public:
  void Compute(const framework::ExecutionContext& context) const override {
X
xiaoting 已提交
87 88 89
    PADDLE_ENFORCE_EQ(!context.Attr<bool>("is_test"), true,
                      platform::errors::InvalidArgument(
                          "GradOp is only callable when is_test is false"));
90 91 92 93 94
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = context.Input<Tensor>("Mask");
    grad_x->mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
95 96 97 98
    auto& dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
    float dropout_prob = context.Attr<float>("dropout_prob");
    const T* mask_data = mask->data<T>();
99 100 101 102 103 104 105

    if (dropout_implementation != "upscale_in_train") {
      int r = xpu::mul(dev_ctx.x_context(),
                       reinterpret_cast<const XPUType*>(grad_y->data<T>()),
                       reinterpret_cast<const XPUType*>(mask_data),
                       reinterpret_cast<XPUType*>(grad_x->data<T>()),
                       grad_y->numel());
106
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul");
107 108 109
      return;
    }

110
    auto version = platform::get_xpu_version(context.GetPlace().GetDeviceId());
111
    if (version == phi::backends::xpu::XPUVersion::XPU1) {
112 113
      xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
      XPUType* mask_new = RAII_GUARD.alloc_l3_or_gm<XPUType>(mask->numel());
114 115 116
      float scale =
          (dropout_prob == 1.0f) ? (1.0f) : (1.0f / (1.0f - dropout_prob));
      int r = xpu::scale(dev_ctx.x_context(),
117 118 119
                         reinterpret_cast<const XPUType*>(mask->data<T>()),
                         reinterpret_cast<XPUType*>(mask_new), mask->numel(),
                         false, scale, 0.0f);
120
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
121 122 123 124 125
      r = xpu::mul(dev_ctx.x_context(),
                   reinterpret_cast<const XPUType*>(grad_y->data<T>()),
                   reinterpret_cast<const XPUType*>(mask_new),
                   reinterpret_cast<XPUType*>(grad_x->data<T>()),
                   grad_y->numel());
126
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul");
127 128 129 130 131 132 133
    } else {
      int r =
          xpu::dropout_grad(dev_ctx.x_context(),
                            reinterpret_cast<const XPUType*>(mask->data<T>()),
                            reinterpret_cast<const XPUType*>(grad_y->data<T>()),
                            reinterpret_cast<XPUType*>(grad_x->data<T>()),
                            dropout_prob, grad_y->numel());
134
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout_grad");
135
    }
136 137 138 139 140
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
141
namespace plat = paddle::platform;
142
REGISTER_OP_XPU_KERNEL(
143 144
    dropout, ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, plat::float16>);
145 146
REGISTER_OP_XPU_KERNEL(
    dropout_grad,
147 148 149
    ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext,
                              plat::float16>);
150
#endif