dropout_op.cc 3.2 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

W
wanghuancoder 已提交
17 18 19
namespace paddle {
namespace framework {
class Scope;
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

N
nhzlx 已提交
27 28 29 30 31 32 33 34 35 36 37
namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * DropoutOp. This Layer doesn't has weights.
 */
class DropoutOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
38
    VLOG(3) << "convert a fluid dropout op to tensorrt dropout layer";
N
nhzlx 已提交
39 40 41
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
42 43
    float dropout_prob =
        BOOST_GET_CONST(float, op_desc.GetAttr("dropout_prob"));
N
nhzlx 已提交
44

45 46
    std::string downgrade_in_infer = "";
    if (op_desc.HasAttr("dropout_implementation")) {
47 48
      downgrade_in_infer = BOOST_GET_CONST(
          std::string, op_desc.GetAttr("dropout_implementation"));
49 50 51 52 53 54 55 56 57 58
    }

    if (!downgrade_in_infer.empty() &&
        downgrade_in_infer == "upscale_in_train") {
      auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input1);
      auto output_name = op_desc.Output("Out")[0];
      RreplenishLayerAndOutput(layer, "dropout", {output_name}, test_mode);
      return;
    }

N
nhzlx 已提交
59 60 61
    platform::CPUPlace cpu_place;
    std::unique_ptr<framework::LoDTensor> weight_tensor(
        new framework::LoDTensor());
62
    weight_tensor->Resize(phi::make_ddim({1}));
N
nhzlx 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    auto* weight_data =
        weight_tensor->mutable_data<float>(platform::CPUPlace());
    weight_data[0] = 1 - dropout_prob;

    TensorRTEngine::Weight scale_weights{
        nvinfer1::DataType::kFLOAT, static_cast<void*>(weight_data),
        weight_tensor->memory_size() / sizeof(float)};
    TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};
    TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                         0};

    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Scale, *const_cast<nvinfer1::ITensor*>(input1),
        nvinfer1::ScaleMode::kUNIFORM, shift_weights.get(), scale_weights.get(),
        power_weights.get());

80 81
    engine_->SetWeights(op_desc.Output("Out").front() + "_dropout",
                        std::move(weight_tensor));
N
nhzlx 已提交
82
    auto output_name = op_desc.Output("Out")[0];
83 84

    RreplenishLayerAndOutput(layer, "dropout", {output_name}, test_mode);
N
nhzlx 已提交
85 86 87 88 89 90 91
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

H
hong 已提交
92
USE_OP_ITSELF(dropout);
N
nhzlx 已提交
93
REGISTER_TRT_OP_CONVERTER(dropout, DropoutOpConverter);