roi_align_op_mlu.cc 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename T>
class ROIAlignOpMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());
    out->set_layout(framework::DataLayout::kNHWC);

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
    auto aligned = ctx.Attr<bool>("aligned");
    const auto& in_dims = in->dims();
    int batch_size = in_dims[0];
    int rois_num = rois->dims()[0];

    if (rois_num == 0) return;
    auto cplace = platform::CPUPlace();
    std::vector<int> roi_batch_id_list(rois_num);
    int rois_batch_size = 0;
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      rois_batch_size = rois_num_t->numel();
      PADDLE_ENFORCE_EQ(
          rois_batch_size,
          batch_size,
          platform::errors::InvalidArgument(
              "The batch size of rois and the batch size of images "
              " must be the same. But received the batch size of rois is %d, "
              "and the batch size of images is %d",
              rois_batch_size,
              batch_size));
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace,
                   rois_num_list.data(),
                   ctx.GetPlace(),
                   rois_num_t->data<int>(),
                   sizeof(int) * rois_batch_size,
                   nullptr /*stream*/);
      int last_idx = 0;
      for (int i = 0; i < rois_batch_size; i++) {
        int end_idx = last_idx + rois_num_list[i];
        for (int j = last_idx; j < end_idx; j++) {
          roi_batch_id_list[j] = i;
        }
        last_idx = end_idx;
      }
    } else {
      auto lod = rois->lod();
      PADDLE_ENFORCE_EQ(lod.empty(),
                        false,
                        platform::errors::InvalidArgument(
                            "Input(ROIs) Tensor of ROIAlignOp "
                            "does not contain LoD information."));
      auto rois_lod = lod.back();
      rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(rois_batch_size,
                        batch_size,
                        platform::errors::InvalidArgument(
                            "The rois_batch_size and imgs "
                            "batch_size must be the same. But received "
                            "rois_batch_size = %d, "
                            "batch_size = %d",
                            rois_batch_size,
                            batch_size));
      int rois_num_with_lod = rois_lod[rois_batch_size];
      PADDLE_ENFORCE_EQ(
          rois_num,
          rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The actual number of rois and the number of rois "
              "provided from Input(RoIsLoD) in RoIAlign must be the same."
              " But received actual number of rois is %d, and the number "
              "of rois from RoIsLoD is %d",
              rois_num,
              rois_num_with_lod));
      for (int i = 0; i < rois_batch_size; i++) {
        int start_idx = rois_lod[i];
        int end_idx = rois_lod[i + 1];
        for (int j = start_idx; j < end_idx; j++) {
          roi_batch_id_list[j] = i;
        }
      }
    }

    // only support float32 for now
    Tensor rois_cpu(framework::TransToPhiDataType(VT::FP32));
    rois_cpu.Resize({rois_num, 4});
    rois_cpu.mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
    framework::TensorCopy(*rois, cplace, dev_ctx, &rois_cpu);
    dev_ctx.Wait();
    T* rois_cpu_ptr = rois_cpu.mutable_data<T>(platform::CPUPlace());

    // boxes; [batch_idx, x1, y1, x2, y2]
    Tensor boxes_cpu(framework::TransToPhiDataType(VT::FP32));
    Tensor boxes_mlu(framework::TransToPhiDataType(VT::FP32));
    boxes_cpu.Resize({rois_num, 5});
    boxes_mlu.Resize({rois_num, 5});
    T* boxes_cpu_ptr = boxes_cpu.mutable_data<T>(platform::CPUPlace());
    boxes_mlu.mutable_data<T>(ctx.GetPlace());
    for (int i = 0; i < rois_num; ++i) {
      boxes_cpu_ptr[i * 5 + 0] = static_cast<T>(roi_batch_id_list[i]);
      boxes_cpu_ptr[i * 5 + 1] = rois_cpu_ptr[i * 4 + 0];
      boxes_cpu_ptr[i * 5 + 2] = rois_cpu_ptr[i * 4 + 1];
      boxes_cpu_ptr[i * 5 + 3] = rois_cpu_ptr[i * 4 + 2];
      boxes_cpu_ptr[i * 5 + 4] = rois_cpu_ptr[i * 4 + 3];
    }

    // copy boxes_cpu to boxes_mlu
    framework::TensorCopy(boxes_cpu, ctx.GetPlace(), dev_ctx, &boxes_mlu);
    dev_ctx.Wait();

    const std::vector<int> perm_to_nhwc = {0, 2, 3, 1};
    const std::vector<int> perm_to_nchw = {0, 3, 1, 2};
    Tensor input_nhwc(in->type());
    Tensor output_nhwc(out->type());
    TransposeFromMLUTensor<T>(
        ctx, perm_to_nhwc, in, &input_nhwc, true /*need_reshape_or_alloc*/);
    auto output_dims = out->dims();
    output_nhwc.mutable_data<T>(
        {output_dims[0], output_dims[2], output_dims[3], output_dims[1]},
        ctx.GetPlace());

    MLUCnnlTensorDesc input_desc(
        input_nhwc, CNNL_LAYOUT_NHWC, ToCnnlDataType(input_nhwc.dtype()));
    MLUCnnlTensorDesc boxes_desc(boxes_mlu);
    MLUCnnlTensorDesc out_desc(
        output_nhwc, CNNL_LAYOUT_NHWC, ToCnnlDataType(output_nhwc.dtype()));
    MLUCnnl::RoiAlign(ctx,
                      pooled_height,
                      pooled_width,
                      sampling_ratio,
                      spatial_scale,
                      aligned,
                      input_desc.get(),
                      GetBasePtr(&input_nhwc),
                      boxes_desc.get(),
                      GetBasePtr(&boxes_mlu),
                      out_desc.get(),
                      GetBasePtr(&output_nhwc));
    TransposeFromMLUTensor<T>(
        ctx, perm_to_nchw, &output_nhwc, out, false /*need_reshape_or_alloc*/);
  };
};

template <typename T>
class ROIAlignGradOpMLUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto spatial_scale = ctx.Attr<T>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
    auto aligned = ctx.Attr<bool>("aligned");
    int rois_num = rois->dims()[0];

    if (!in_grad) {
      return;
    }
    in_grad->mutable_data<T>(ctx.GetPlace());

    std::vector<int> roi_batch_id_list(rois_num);
    auto cplace = platform::CPUPlace();
    int rois_batch_size = 0;
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      rois_batch_size = rois_num_t->numel();
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace,
                   rois_num_list.data(),
                   ctx.GetPlace(),
                   rois_num_t->data<int>(),
                   sizeof(int) * rois_batch_size,
                   nullptr /*stream*/);
      int last_idx = 0;
      for (int i = 0; i < rois_batch_size; i++) {
        int end_idx = last_idx + rois_num_list[i];
        for (int j = last_idx; j < end_idx; j++) {
          roi_batch_id_list[j] = i;
        }
        last_idx = end_idx;
      }
    } else {
      auto rois_lod = rois->lod().back();
      rois_batch_size = rois_lod.size() - 1;
      for (int i = 0; i < rois_batch_size; i++) {
        int start_idx = rois_lod[i];
        int end_idx = rois_lod[i + 1];
        for (int j = start_idx; j < end_idx; j++) {
          roi_batch_id_list[j] = i;
        }
      }
    }

    Tensor rois_cpu(framework::TransToPhiDataType(VT::FP32));
    rois_cpu.Resize({rois_num, 4});
    rois_cpu.mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
    framework::TensorCopy(*rois, cplace, dev_ctx, &rois_cpu);
    dev_ctx.Wait();
    T* rois_cpu_ptr = rois_cpu.mutable_data<T>(platform::CPUPlace());

    // boxes; [batch_idx, x1, y1, x2, y2]
    Tensor boxes_cpu(framework::TransToPhiDataType(VT::FP32));
    Tensor boxes_mlu(framework::TransToPhiDataType(VT::FP32));
    boxes_cpu.Resize({rois_num, 5});
    boxes_mlu.Resize({rois_num, 5});
    T* boxes_cpu_ptr = boxes_cpu.mutable_data<T>(platform::CPUPlace());
    boxes_mlu.mutable_data<T>(ctx.GetPlace());
    for (int i = 0; i < rois_num; ++i) {
      boxes_cpu_ptr[i * 5 + 0] = static_cast<T>(roi_batch_id_list[i]);
      boxes_cpu_ptr[i * 5 + 1] = rois_cpu_ptr[i * 4 + 0];
      boxes_cpu_ptr[i * 5 + 2] = rois_cpu_ptr[i * 4 + 1];
      boxes_cpu_ptr[i * 5 + 3] = rois_cpu_ptr[i * 4 + 2];
      boxes_cpu_ptr[i * 5 + 4] = rois_cpu_ptr[i * 4 + 3];
    }

    // copy boxes_cpu to boxes_mlu
    framework::TensorCopy(boxes_cpu, ctx.GetPlace(), dev_ctx, &boxes_mlu);
    dev_ctx.Wait();

    const std::vector<int> perm_to_nhwc = {0, 2, 3, 1};
    const std::vector<int> perm_to_nchw = {0, 3, 1, 2};
    Tensor grads_nhwc(out_grad->type());
    Tensor grads_image_nhwc(in_grad->type());
    TransposeFromMLUTensor<T>(ctx,
                              perm_to_nhwc,
                              out_grad,
                              &grads_nhwc,
                              true /*need_reshape_or_alloc*/);
    auto grads_image_dims = in_grad->dims();
    grads_image_nhwc.mutable_data<T>({grads_image_dims[0],
                                      grads_image_dims[2],
                                      grads_image_dims[3],
                                      grads_image_dims[1]},
                                     ctx.GetPlace());

    MLUCnnlTensorDesc grads_desc(
        grads_nhwc, CNNL_LAYOUT_NHWC, ToCnnlDataType(grads_nhwc.dtype()));
    MLUCnnlTensorDesc boxes_desc(boxes_mlu);
    MLUCnnlTensorDesc grads_image_desc(
        grads_image_nhwc,
        CNNL_LAYOUT_NHWC,
        ToCnnlDataType(grads_image_nhwc.dtype()));
    MLUCnnl::RoiAlignBackward(ctx,
                              sampling_ratio,
                              spatial_scale,
                              aligned,
                              grads_desc.get(),
                              GetBasePtr(&grads_nhwc),
                              boxes_desc.get(),
                              GetBasePtr(&boxes_mlu),
                              grads_image_desc.get(),
                              GetBasePtr(&grads_image_nhwc));
    TransposeFromMLUTensor<T>(ctx,
                              perm_to_nchw,
                              &grads_image_nhwc,
                              in_grad,
                              false /*need_reshape_or_alloc*/);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(roi_align, ops::ROIAlignOpMLUKernel<float>);

REGISTER_OP_MLU_KERNEL(roi_align_grad, ops::ROIAlignGradOpMLUKernel<float>);