role_maker.py 29.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defination of Role Makers."""
15
import os
16
import time
17
import numpy as np
18
import warnings
19
from multiprocessing import Process, Manager
20

21
import paddle.fluid as fluid
22 23 24 25 26


class Role:
    WORKER = 1
    SERVER = 2
27
    HETER_WORKER = 3
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    ALL = 4


class Gloo(object):
    """
    Gloo is a universal class for barrier and collective communication
    """

    class RENDEZVOUS:
        HDFS = 1
        FILE = 2
        HTTP = 3

    def __init__(self):
        self._worker_comm = None
        self._server_comm = None
        self._nodes_comm = None

        self._comm_world = ["worker", "server", "all"]
        self._err_init = "gloo is not initialized, will not communicator with other nodes"
        self._err_type = "gloo initialized error, please check arguments"
        self._err_world = "argument error, comm_world must in {}".format(
            self._comm_world)

        self._is_initialized = False
        self._init_timeout_seconds = 3600
        self._run_timeout_seconds = 9999999

        self._rendezvous = None
        self._role = None
        self._iface = None

        self._role_id = -1
        self._worker_num = -1
        self._server_num = -1
        self._need_init_all = False

    def init(self,
             rendezvous,
             role,
             role_id,
             worker_num,
             server_num,
             need_init_all=False,
             kwargs=None):

        self._rendezvous = rendezvous
        self._role = role
        self._role_id = role_id
        self._worker_num = worker_num
        self._server_num = server_num
        self._need_init_all = need_init_all
        self._iface = self.__get_default_iface()
        self._prefix = kwargs.get("store.prefix", "")

        if self._rendezvous == Gloo.RENDEZVOUS.HDFS:
            dfs_name = kwargs.get("dfs.name", "")
            dfs_ugi = kwargs.get("dfs.ugi", "")
            dfs_path = kwargs.get("dfs.path", "")

            if not dfs_name or not dfs_ugi or not dfs_path:
                raise ValueError(self._err_type)
            self._init_dfs(dfs_name, dfs_ugi, dfs_path, self._prefix)

        elif self._rendezvous == Gloo.RENDEZVOUS.FILE:
            fs_path = kwargs.get("dfs.path", "")

            if not fs_path:
                raise ValueError(self._err_type)
            self._init_fs(fs_path, self._prefix)

        elif self._rendezvous == Gloo.RENDEZVOUS.HTTP:
            ip = kwargs.get("http.host", "")
            port = kwargs.get("http.port", "")

            if not ip or not port:
                raise ValueError(self._err_type)
            self._init_http(ip, port, self._prefix)

        else:
            raise ValueError(self._err_type)

        self._is_initialized = True

    def _init_fs(self, fs_path, prefix):
        def init(rank, nodes, role):
            gloo = fluid.core.Gloo()
            gloo.set_rank(rank)
            gloo.set_size(nodes)
            gloo.set_prefix(prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            gloo.set_hdfs_store(os.path.join(fs_path, role), "", "")
            gloo.init()
            return gloo

        if self._role == Role.WORKER:
            rank, nodes = self._get_rank_nodes(Role.WORKER)
            gloo = init(rank, nodes, "WORKER")
            self._worker_comm = gloo
        else:
            rank, nodes = self._get_rank_nodes(Role.SERVER)
            gloo = init(rank, nodes, "SERVER")
            self._server_comm = gloo

        if self._need_init_all:
            rank, nodes = self._get_rank_nodes(Role.ALL)
            gloo = init(rank, nodes, "ALL")
            self._nodes_comm = gloo

    def _init_dfs(self, dfs_name, dfs_ugi, dfs_path, prefix):
        def init(rank, nodes, role):
            gloo = fluid.core.Gloo()
            gloo.set_rank(rank)
            gloo.set_size(nodes)
            gloo.set_prefix(prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            gloo.set_hdfs_store(os.path.join(dfs_path, role), dfs_name, dfs_ugi)
            gloo.init()
            return gloo

        if self._role == Role.WORKER:
            rank, nodes = self._get_rank_nodes(Role.WORKER)
            gloo = init(rank, nodes, "WORKER")
            self._worker_comm = gloo
        else:
            rank, nodes = self._get_rank_nodes(Role.SERVER)
            gloo = init(rank, nodes, "SERVER")
            self._server_comm = gloo

        if self._need_init_all:
            rank, nodes = self._get_rank_nodes(Role.ALL)
            gloo = init(rank, nodes, "ALL")
            self._nodes_comm = gloo

    def _init_http(self, ip, port, prefix):
        def __start_kv_server(http_server_d, size_d):
            from paddle.distributed.fleet.utils.http_server import KVServer
            http_server = KVServer(port, size_d)
            http_server.start()
            wait_seconds = 5
172
            while http_server_d.get("running", False):
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
                time.sleep(wait_seconds)
            http_server.stop()

        def init_kv_server():
            size_d = {
                "trainer": self._worker_num,
                "pserver": self._server_num,
                "all": self._worker_num + self._server_num
            }

            _http_server_d = {"running": True}
            # child process for http server
            _http_server = Process(
                target=__start_kv_server, args=(_http_server_d, size_d))
            _http_server.daemon = True
            # set running status to True
            # start child process
            _http_server.start()

        def init(rank, nodes, role):
            gloo = fluid.core.Gloo()
            gloo.set_rank(rank)
            gloo.set_size(nodes)
            gloo.set_prefix(prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            gloo.set_http_store(ip, port, role)
            return gloo

        port = int(port)

        if self._role == Role.SERVER and self._role_id == 0:
            init_kv_server()

        if self._role == Role.WORKER:
            rank, nodes = self._get_rank_nodes(Role.WORKER)
            gloo = init(rank, nodes, "WORKER")
            self._worker_comm = gloo
        else:
            rank, nodes = self._get_rank_nodes(Role.SERVER)
            gloo = init(rank, nodes, "SERVER")
            self._server_comm = gloo

        if self._need_init_all:
            rank, nodes = self._get_rank_nodes(Role.ALL)
            gloo = init(rank, nodes, "ALL")
            self._nodes_comm = gloo

    def _get_rank_nodes(self, role):
        nodes = 0
        rank = -1

        if role == Role.WORKER:
            nodes = self._worker_num
            rank = self._role_id
        elif role == Role.SERVER:
            nodes = self._server_num
            rank = self._role_id
        elif role == Role.ALL:
            nodes = self._worker_num + self._server_num

            if self._role == Role.WORKER:
                rank = self._role_id
            else:
                rank = self._worker_num + self._role_id
        else:
            ValueError(self._err_type)

        return rank, nodes

    def __get_default_iface(self):
        """
        get default physical interface
        """
        default1 = self.__get_default_iface_from_gateway()
        default2 = self.__get_default_iface_from_interfaces()
        return default2 if default1 == "lo" else default1

    def __get_default_iface_from_gateway(self):
        """
        get default physical interface
        """
1
123malin 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        res = os.popen("route -A inet").read().strip().split("\n")

        gateway_idx = None
        iface_idx = None
        for item in res:
            item = item.split()
            if "Gateway" in item and "Iface" in item:
                gateway_idx = item.index("Gateway")
                iface_idx = item.index("Iface")
            elif gateway_idx != None and iface_idx != None:
                gateway = None
                if len(item) > gateway_idx:
                    gateway = item[gateway_idx]
                if gateway and gateway != '*' and gateway != "0.0.0.0" and len(
                        item) > iface_idx:
                    return item[iface_idx]
272 273 274 275 276 277
        return "lo"

    def __get_default_iface_from_interfaces(self):
        """
        get default physical interface
        """
1
123malin 已提交
278 279 280 281 282
        res = os.popen("ip -f inet addr | awk NR%3==1").read().strip().split(
            "\n")
        for item in res:
            if "BROADCAST" in item:
                return item.split(":")[1].strip()
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        return "lo"

    def barrier(self, comm_world):
        """
        dummy barrier, do nothing
        """
        if not self._is_initialized:
            warnings.warn(self._err_init)
            return

        if comm_world not in self._comm_world:
            raise ValueError(self._err_world)

        if comm_world == "worker":
            self._worker_comm.barrier()
        elif comm_world == "server":
            self._server_comm.barrier()
        else:
            self._nodes_comm.barrier()

    def all_reduce(self, input, mode="sum", comm_world="worker"):
        if not self._is_initialized:
            warnings.warn(self._err_init)
            return input

        if comm_world not in self._comm_world:
            raise ValueError(self._err_world)

        input = np.array(input)
        input_shape = input.shape
        input_list = input.reshape(-1).tolist()

        self.barrier(comm_world)

        if comm_world == "worker":
            ans = self._worker_comm.all_reduce(input_list, mode)
        elif comm_world == "server":
            ans = self._server_comm.all_reduce(input_list, mode)
        else:
            ans = self._nodes_comm.all_reduce(input_list, mode)

        output = np.array(ans).reshape(input_shape)
        return output

    def all_gather(self, input, comm_world="worker"):
        """
        dummy all gather, do nothing
        Args:
            obj(any): obj to do all gather
        """
        if not self._is_initialized:
            warnings.warn(self._err_init)
            return input

        if comm_world not in self._comm_world:
            raise ValueError(self._err_world)

        if comm_world == "worker":
            output = self._worker_comm.all_gather(input)
        elif comm_world == "server":
            output = self._server_comm.all_gather(input)
        else:
            output = self._nodes_comm.all_gather(input)

        return output
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364


class RoleMakerBase(object):
    """
    RoleMakerBase is a base class for assigning a role to current process
    in distributed training.
    A paddle developer can implement RoleMakerBase to design a role maker
    for worker or pserver assignment.
    """

    def __init__(self):
        self._worker_endpoints = []
        self._server_endpoints = []
        self._role_is_generated = False
        self._role = None
        self._current_id = -1

365 366 367 368 369
        # for heter parameter server mode
        self._heter_trainer_endpoints = []
        self._heter_trainer_device = "CPU"
        self._is_heter_parameter_server_mode = False

370
    def _is_worker(self):
371 372 373 374 375
        """
        return is_worker() of current process
        """
        raise NotImplementedError("Please implement this method in child class")

376
    def _is_server(self):
377 378 379 380 381
        """
        return is_server() of current process
        """
        raise NotImplementedError("Please implement this method in child class")

382
    def _is_first_worker(self):
383 384 385 386 387 388 389 390
        """
        Check whether the node is the first instance of worker.
        Returns:
            bool: True if this is the first node of worker,
                  False if not.
        """
        raise NotImplementedError("Please implement this method in child class")

391
    def _worker_num(self):
392 393 394 395 396 397 398 399
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        raise NotImplementedError("Please implement this method in child class")

400
    def _server_num(self):
401 402 403 404 405 406 407 408
        """
        Get current total server number.

        Returns:
            int: server number
        """
        raise NotImplementedError("Please implement this method in child class")

409
    def _worker_index(self):
410 411 412 413 414 415 416 417
        """
        Get current worker id.

        Returns:
            int: node id
        """
        raise NotImplementedError("Please implement this method in child class")

418
    def _server_index(self):
419 420 421 422 423 424 425 426
        """
        Get current server id.

        Returns:
            int: node id
        """
        raise NotImplementedError("Please implement this method in child class")

427
    def _role_id(self):
428 429 430 431 432 433 434 435
        """
        Get current id.

        Returns:
            int: node id
        """
        raise NotImplementedError("Please implement this method in child class")

436
    def _node_num(self):
437 438 439 440 441 442 443
        """
        Get the training node number
        Returns:
            int: node num
        """
        raise NotImplementedError("Please implement this method in child class")

444
    def _get_trainer_endpoints(self):
445 446 447 448 449
        """
        return trainer endpoints
        """
        return self._worker_endpoints

450
    def _get_pserver_endpoints(self):
451 452 453 454 455 456 457 458 459 460
        """
        return pserver endpoints
        """
        return self._server_endpoints

    def to_string(self):
        return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
            self._role, self._current_id, self._worker_endpoints,
            self._server_endpoints)

461 462
    def _all_gather(self, input, comm_world="worker"):
        print("warning: RoleMakerBase does not have all gather worker.")
463 464
        return None

465
    def _all_reduce(self, input, mode="sum", comm_world="worker"):
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
        """
        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        print("warning: RoleMakerBase does not have all reduce worker.")
        return None

    def _barrier(self, comm_world):
        """
        barrier between trainers if current role is TRAINER
        """
        print("warning: RoleMakerBase does not have barrier worker.")

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    def _is_heter_worker(self):
        """
        Return is_heter_worker() of current process
        """
        warnings.warn("RoleMakerBase does not have function: _is_heter_worker.")
        return False

    def _heter_worker_num(self):
        """
        Get current total heter-worker number.

        Returns:
            int: heter_worker number
        """
        warnings.warn(
            "RoleMakerBase does not have function: _heter_worker_num.")
        return 0

    def _get_heter_worker_endpoints(self):
        """
        Returns:
            string: all heter_trainers'endpoints
        """
C
Chengmo 已提交
504
        assert self._heter_trainer_endpoints != [], "Heter Worker Endpoints Not initialized"
505 506 507 508 509 510 511 512 513
        return self._heter_trainer_endpoints

    def _get_heter_worker_endpoint(self):
        """
        Returns:
            int: corresponding heter_trainer's endpoint

        e.g: if we have 4 cpu-trainer(default), 2 gpu-trainer(heter)
             then No.0 and No.2 cpu-trainer will work with No.0 gpu-trainer
C
Chengmo 已提交
514
             and No.1 and No.3 cpu-trainer will work with No.1 gpu-trainer
515
        """
C
Chengmo 已提交
516 517
        assert self._heter_trainer_endpoints != [], "Heter Worker Endpoints Not initialized"
        return self._heter_trainer_endpoints[(self._current_id) %
518 519 520 521 522 523 524 525 526
                                             self._heter_worker_num()]

    def _get_heter_worker_device(self):
        """
        Returns:
            string: heter_trainer's device of current node, e.g: CPU/GPU/XPU
        """
        return self._heter_trainer_device.upper()

527 528

class PaddleCloudRoleMaker(RoleMakerBase):
529
    def __init__(self, is_collective=False, **kwargs):
530 531 532
        super(PaddleCloudRoleMaker, self).__init__()
        self._is_collective = is_collective

533 534 535
        self._non_distributed = False

        self._kwargs = kwargs
536 537 538 539 540
        self._role_is_generated = False

        self._server_endpoints = None
        self._worker_endpoints = None

541
        self._gloo = Gloo()  # gloo instance
542 543

    def _barrier(self, comm_world):
544
        self._gloo.barrier(comm_world)
545

546 547
    def _all_gather(self, input, comm_world="worker"):
        return self._gloo.all_gather(input, comm_world)
548

549 550
    def _all_reduce(self, input, mode="sum", comm_world="worker"):
        return self._gloo.all_reduce(input, mode, comm_world)
551

552
    def _is_worker(self):
553 554 555 556
        """
        whether current process is worker
        """
        if not self._role_is_generated:
557
            self._generate_role()
558 559
        return self._role == Role.WORKER

560
    def _is_server(self):
561 562 563 564
        """
        whether current process is server
        """
        if not self._role_is_generated:
565
            self._generate_role()
566 567
        return self._role == Role.SERVER

568
    def _is_first_worker(self):
569 570 571 572
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
573
            self._generate_role()
574 575
        return self._role == Role.WORKER and self._current_id == 0

576
    def _worker_index(self):
577 578 579 580
        """
        get index of current worker
        """
        if not self._role_is_generated:
581
            self._generate_role()
582 583
        return self._current_id

584
    def _server_index(self):
585 586 587 588
        """
        get index of current server
        """
        if not self._role_is_generated:
589
            self._generate_role()
590 591
        return self._current_id

592
    def _role_id(self):
593 594 595
        """
        get index of current node
        """
596 597
        if not self._role_is_generated:
            self._generate_role()
598
        return self._current_id
599

600
    def _worker_num(self):
601 602 603 604
        """
        retrun the current number of worker
        """
        if not self._role_is_generated:
605
            self._generate_role()
606 607
        return self._trainers_num

608
    def _server_num(self):
609 610 611 612
        """
        return the current number of server
        """
        if not self._role_is_generated:
613
            self._generate_role()
614 615
        return len(self._get_pserver_endpoints(
        )) if self._get_pserver_endpoints() is not None else 0
616

617
    def _node_num(self):
618 619 620 621
        """
        return the training node number
        """
        if not self._role_is_generated:
622 623
            self._generate_role()
        return self._nodes_num
624

625
    def _get_trainer_endpoints(self):
626 627 628 629
        """
        get endpoint of all trainers
        """
        if not self._role_is_generated:
630
            self._generate_role()
631 632
        return self._worker_endpoints

633
    def _get_pserver_endpoints(self):
634 635 636 637
        """
        get endpoint of all pservers
        """
        if not self._role_is_generated:
638
            self._generate_role()
639 640
        return self._server_endpoints

641 642 643 644 645 646
    def _is_non_distributed(self):
        """
        Return True if indispensable environment for fleetrun is not found
        (use python-run to launch fleet-code directly)
        """
        if not self._role_is_generated:
647
            self._generate_role()
648 649
        return self._non_distributed

650 651 652 653 654
    def _heter_worker_num(self):
        """
        get heter worker nums
        """
        if not self._role_is_generated:
655
            self._generate_role()
656 657 658 659 660 661 662
        return self._heter_trainers_num

    def _is_heter_worker(self):
        """
        whether current process is heter worker
        """
        if not self._role_is_generated:
663
            self._generate_role()
664 665
        return self._role == Role.HETER_WORKER

666 667 668
    def _ps_env(self):
        try:
            # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
669
            # format: string(ip:port,ip:port), eg. 127.0.0.1:6001,127.0.0.1:6002
670
            self._server_endpoints = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
671

672 673 674 675 676 677
            if self._server_endpoints is None:
                # back to non_distributed execution.
                self._server_endpoints = ""
                self._trainers_num = 1
                self._role = Role.WORKER
                self._current_id = 0
678
                self._nodes_num = 1
679 680 681 682 683 684
                self._heter_trainers_num = 0
                self._heter_trainer_endpoints = None
                self._non_distributed = True
                return

            self._server_endpoints = self._server_endpoints.split(",")
685 686 687 688 689 690 691

            self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
            if self._worker_endpoints:
                self._worker_endpoints = self._worker_endpoints.split(",")
            else:
                self._worker_endpoints = []

692 693 694
            trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
            training_role = os.environ["TRAINING_ROLE"]

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
            if training_role not in ["TRAINER", "PSERVER", "HETER_TRAINER"]:
                raise ValueError(
                    "TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER, but get {}, please check your environment.".
                    format(training_role))

            # For heter parameter server env setting
            heter_trainer_eplist = os.getenv(
                "PADDLE_HETER_TRAINER_IP_PORT_LIST", None)
            heter_trainer_device = os.getenv("PADDLE_HETER_TRAINER_DEVICE",
                                             None)
            if heter_trainer_eplist and heter_trainer_device:
                try:
                    heter_trainer_eplist = os.environ[
                        "PADDLE_HETER_TRAINER_IP_PORT_LIST"].split(",")
                except:
                    raise ValueError(
                        "Can not Find PADDLE_HETER_TRAINER_IP_PORT_LIST in env or its format doesn't match the requirement: 'IP:PORT,IP:PORT' ."
                    )

                self._is_heter_parameter_server_mode = True
                heter_trainers_num = len(heter_trainer_eplist)
                current_node_device = heter_trainer_device.upper()
                if current_node_device not in ["CPU", "GPU", "XPU"]:
                    raise ValueError(
                        "Heter Trainer doesn't support {} device now, please use CPU / GPU / XPU(KunLun)".
                        format(heter_trainer_device))
                self._heter_trainer_device = current_node_device
            else:
                self._is_heter_parameter_server_mode = False
                heter_trainers_num = 0
725 726 727 728 729 730 731 732 733 734 735 736

            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
                if len(self._worker_endpoints) > 0:
                    self._cur_endpoint = self._worker_endpoints[current_id]
            elif training_role == "PSERVER":
                role = Role.SERVER
                port = os.environ["PADDLE_PORT"]
                ip = os.environ["POD_IP"]
                self._cur_endpoint = ip + ":" + port
                current_id = self._server_endpoints.index(self._cur_endpoint)
737 738 739 740 741 742
            elif training_role == "HETER_TRAINER":
                role = Role.HETER_WORKER
                cur_ip = os.environ["POD_IP"]
                cur_port = os.environ["PADDLE_PORT"]
                curr_endpoint = ":".join([cur_ip, cur_port])
                current_id = heter_trainer_eplist.index(curr_endpoint)
743
            else:
744 745 746
                raise ValueError(
                    "TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER")
        except ValueError as e:
747
            raise ValueError(
748
                "Something wrong with PaddleCloud, please check environment")
749 750 751 752

        self._trainers_num = trainers_num
        self._role = role
        self._current_id = current_id
753
        self._nodes_num = len(
754
            set([x.split(':')[0] for x in self._worker_endpoints]))
755 756
        self._heter_trainers_num = heter_trainers_num
        self._heter_trainer_endpoints = heter_trainer_eplist
757 758 759 760 761

    def _collective_env(self):
        self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
        assert (self._training_role == "TRAINER")
762
        self._role = Role.WORKER
763 764
        self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        self._cur_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
765 766 767 768 769
        if self._worker_endpoints is None:
            # back to non_distributed execution.
            self._worker_endpoints = "127.0.0.1:6170"
            self._cur_endpoint = self._worker_endpoints
            self._non_distributed = True
770 771
        self._worker_endpoints = self._worker_endpoints.split(",")
        self._trainers_num = len(self._worker_endpoints)
772
        self._nodes_num = len(
773
            set([x.split(':')[0] for x in self._worker_endpoints]))
774

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
    def _gloo_init(self):
        # PADDLE_WITH_GLOO 1: trainer barrier, 2: all barrier
        use_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
        if use_gloo not in [1, 2]:
            return

        # PADDLE_GLOO_RENDEZVOUS 1: HDFS 2: FILE 3: HTTP
        rendezvous_type = int(os.getenv("PADDLE_GLOO_RENDEZVOUS", "0"))
        prefix = os.getenv("SYS_JOB_ID", "")
        if rendezvous_type not in [
                Gloo.RENDEZVOUS.HDFS, Gloo.RENDEZVOUS.HTTP, Gloo.RENDEZVOUS.FILE
        ]:
            raise ValueError(self._gloo._err_type)

        need_init_all = True if use_gloo == 2 else False

        if rendezvous_type == Gloo.RENDEZVOUS.HDFS:
            dfs_name = os.getenv("PADDLE_GLOO_FS_NAME", "")
            dfs_ugi = os.getenv("PADDLE_GLOO_FS_UGI", "")
            dfs_path = os.getenv("PADDLE_GLOO_FS_PATH", "")
            kwargs = {
                "dfs.name": dfs_name,
                "dfs.ugi": dfs_ugi,
                "dfs.path": dfs_path,
                "store.prefix": prefix,
            }
        elif rendezvous_type == Gloo.RENDEZVOUS.HTTP:
            ip = os.getenv("PADDLE_GLOO_HTTP_HOST", "")
            port = os.getenv("PADDLE_GLOO_HTTP_PORT", "")
            kwargs = {
                "http.host": ip,
                "http.port": port,
                "store.prefix": prefix,
            }
809
        else:
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
            dfs_path = os.getenv("PADDLE_GLOO_FS_PATH", "")
            kwargs = {
                "dfs.path": dfs_path,
                "store.prefix": prefix,
            }

        if rendezvous_type == Gloo.RENDEZVOUS.HDFS:
            type = "HDFS"
        elif rendezvous_type == Gloo.RENDEZVOUS.HTTP:
            type = "HTTP"
        else:
            type = "FILE"
        print("Gloo init with {}: need_init_all: {}, args: {}".format(
            type, need_init_all, kwargs))

        self._gloo.init(
            rendezvous=rendezvous_type,
            role=self._role,
828 829 830
            role_id=self._role_id(),
            worker_num=self._worker_num(),
            server_num=self._server_num(),
831 832
            need_init_all=need_init_all,
            kwargs=kwargs)
833

834
    def _generate_role(self):
835 836 837 838 839 840 841 842 843
        """
        generate role for role maker
        """
        if not self._role_is_generated:
            if not self._is_collective:
                self._ps_env()
            else:
                self._collective_env()
            self._role_is_generated = True
844
            self._gloo_init()
845 846 847 848 849 850


class UserDefinedRoleMaker(PaddleCloudRoleMaker):
    def __init__(self, is_collective=False, init_gloo=False, **kwargs):
        super(UserDefinedRoleMaker, self).__init__(
            is_collective=is_collective, init_gloo=init_gloo, **kwargs)
851
        self._init_gloo = init_gloo
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

    def _user_defined_ps_env(self):
        self._server_endpoints = self._kwargs.get("server_endpoints")
        self._worker_endpoints = self._kwargs.get("worker_endpoints", [])
        self._trainers_num = self._kwargs.get("worker_num", 0)

        if self._trainers_num == 0:
            assert (len(self._worker_endpoints) > 0)
            self._trainers_num = len(self._worker_endpoints)

        self._role = self._kwargs.get("role")
        self._current_id = self._kwargs.get("current_id")

        if self._role == Role.WORKER and len(
                self._worker_endpoints) > self._current_id:
            self._cur_endpoint = self._worker_endpoints[self._current_id]
        elif self._role == Role.SERVER:
            self._cur_endpoint = self._server_endpoints[self._current_id]
870
        self._nodes_num = len(
871
            set([x.split(':')[0] for x in self._worker_endpoints]))
872 873 874 875 876

    def _user_defined_collective_env(self):
        self._worker_endpoints = self._kwargs.get("worker_endpoints")
        self._current_id = self._kwargs.get("current_id")
        self._trainers_num = len(self._worker_endpoints)
877
        self._training_role = Role.WORKER
878
        self._nodes_num = len(
879
            set([x.split(':')[0] for x in self._worker_endpoints]))
880

881
    def _generate_role(self):
882 883 884 885 886 887 888 889 890
        """
        generate role for role maker
        """
        if not self._role_is_generated:
            if not self._is_collective:
                self._user_defined_ps_env()
            else:
                self._user_defined_collective_env()
            self._role_is_generated = True