test_recurrent_op.py 14.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yan Chunwei 已提交
17
import unittest
S
superjom 已提交
18

19 20 21 22
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, grad_var_name
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
Y
Yu Yang 已提交
23
import numpy as np
24
import paddle.fluid.core as core
S
fix res  
superjom 已提交
25 26


Y
Yu Yang 已提交
27 28 29 30
class PyRNNBase(object):
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
31

32 33
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
34 35 36

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
37 38
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
39 40 41 42

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

class PySimpleRNN1(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN1, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.h_boot = np.random.normal(size=(batch_size,
                                             input_dim)).astype("float32")

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN2, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.W = np.random.normal(size=(input_dim, input_dim)).astype("float32")
        self.U = np.random.normal(size=(input_dim, input_dim)).astype("float32")
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
76 77 78

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
79
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
80 81
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
82 83
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
84

Y
Yu Yang 已提交
85 86
        def py_sigmoid(x):
            return 1. / (1. + np.exp(-x))
S
fix res  
superjom 已提交
87

Y
Yu Yang 已提交
88 89
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
90 91


Y
Yu Yang 已提交
92 93 94
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
95 96 97
    return tensor


Y
Yu Yang 已提交
98
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
99 100 101
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
102
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
103 104 105 106 107
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
108
        - h
Y
Yan Chunwei 已提交
109 110
    '''

Y
Yu Yang 已提交
111 112 113 114
    input_dim = 2
    batch_size = 1
    sent_len = 1

115 116 117
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
118
        self.p_info = {
119 120
            "main_program": self.main_program,
            "startup_program": self.startup_program
Y
Yu Yang 已提交
121 122
        }
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
123

S
superjom 已提交
124
    def setUp(self):
125
        self.setup_program()
Y
Yu Yang 已提交
126
        self.data_field = {"x", "h_boot"}
Y
Yan Chunwei 已提交
127

Y
Yu Yang 已提交
128 129 130 131
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

Y
Yu Yang 已提交
132
        self.output = layers.mean(self.create_rnn_op(), **self.p_info)
Y
Yan Chunwei 已提交
133 134

    def create_rnn_op(self):
135
        x = layers.data(
Y
Yu Yang 已提交
136
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
137
            dtype='float32',
Y
Yu Yang 已提交
138 139 140
            name='x',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
141
        x.stop_gradient = False
142
        h_boot = layers.data(
Y
Yu Yang 已提交
143
            shape=[self.input_dim],
F
fengjiayi 已提交
144
            dtype='float32',
Y
Yu Yang 已提交
145 146
            name='h_boot',
            **self.p_info)
Y
Yu Yang 已提交
147
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
148

149
        rnn = layers.StaticRNN(main_program=self.main_program)
Y
Yu Yang 已提交
150 151 152 153
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

154 155
            h = layers.scale(
                x=layers.elementwise_add(
Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
                    x=h_pre, y=x_t, **self.p_info),
                scale=self.py_rnn.scale,
                **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        exe = Executor(self.place)
171
        out = exe.run(self.main_program,
Y
Yu Yang 已提交
172 173 174
                      feed=self.feed_map,
                      fetch_list=[self.output])

D
dzhwinter 已提交
175
        return out[0]
Y
Yu Yang 已提交
176 177 178 179 180 181 182

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        fetch_list = [
Q
qiaolongfei 已提交
183
            self.main_program.global_block().var(grad_var_name(x))
Y
Yu Yang 已提交
184 185 186 187
            for x in self.data_field
        ]

        exe = Executor(self.place)
188 189
        return exe.run(self.main_program,
                       feed=self.feed_map,
D
dzhwinter 已提交
190 191
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yu Yang 已提交
192 193 194 195

    def test_backward(self):
        self.check_forward()

F
fengjiayi 已提交
196
        append_backward(self.output)
Y
Yu Yang 已提交
197 198 199 200 201 202 203 204 205 206 207

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
        for idx, name in enumerate(self.data_field):
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
            self.assertTrue(
                np.isclose(
                    num_grad[idx], ana_grad[idx], rtol=0.1).all())

    def check_forward(self):
208
        print('test recurrent op forward')
S
superjom 已提交
209 210
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
211
        print('pd_output', pd_output)
S
superjom 已提交
212
        print
213
        print('py_output', py_output)
S
superjom 已提交
214
        self.assertEqual(pd_output.shape, py_output.shape)
S
superjom 已提交
215
        self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all())
Y
Yan Chunwei 已提交
216

Y
Yu Yang 已提交
217 218 219 220 221 222 223 224 225
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
        feed_list = [getattr(self.py_rnn, x) for x in self.data_field]
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
226

Y
Yu Yang 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
    '''
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
258
        self.setup_program()
Y
Yu Yang 已提交
259 260 261 262 263 264 265

        self.data_field = {"x", "h_boot", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

Y
Yu Yang 已提交
266
        self.output = layers.mean(self.create_rnn_op(), **self.p_info)
Y
Yu Yang 已提交
267 268

    def create_rnn_op(self):
269
        x = layers.data(
Y
Yu Yang 已提交
270
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
271
            dtype='float32',
Y
Yu Yang 已提交
272 273 274
            name='x',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
275
        x.stop_gradient = False
276
        h_boot = layers.data(
Y
Yu Yang 已提交
277
            shape=[self.input_dim],
F
fengjiayi 已提交
278
            dtype='float32',
Y
Yu Yang 已提交
279 280
            name='h_boot',
            **self.p_info)
Y
Yu Yang 已提交
281
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
282

283
        rnn = layers.StaticRNN(main_program=self.main_program)
Y
Yu Yang 已提交
284 285 286 287
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

288 289
            temp_l = layers.fc(input=x_t,
                               size=self.input_dim,
Y
Yu Yang 已提交
290
                               param_attr='W',
291 292 293 294
                               bias_attr=False,
                               **self.p_info)
            temp_r = layers.fc(input=h_pre,
                               size=self.input_dim,
Y
Yu Yang 已提交
295
                               param_attr='U',
296 297 298 299 300
                               bias_attr=False,
                               **self.p_info)

            h = layers.sigmoid(
                x=layers.elementwise_add(
Y
Yu Yang 已提交
301 302 303 304 305 306 307 308 309
                    x=temp_l, y=temp_r, **self.p_info),
                **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()


310
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
        def __init__(self, input_shape, output_shape):
327 328
            super(RecurrentOpMultipleMemoryTest.PySimpleRNN3, self).__init__(
                input_shape, output_shape)
Y
Yu Yang 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

            seq_len, batch_size, input_dim = input_shape
            self.h_boot1 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")
            self.h_boot2 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
356
        self.setup_program()
Y
Yu Yang 已提交
357 358 359 360 361

        self.data_field = {"x", "h_boot1", "h_boot2"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
362 363
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
            self.input_shape, self.output_shape)
Y
Yu Yang 已提交
364

Y
Yu Yang 已提交
365
        self.output = layers.mean(self.create_rnn_op(), **self.p_info)
Y
Yu Yang 已提交
366 367

    def create_rnn_op(self):
368
        x = layers.data(
Y
Yu Yang 已提交
369
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
370
            dtype='float32',
Y
Yu Yang 已提交
371 372 373
            name='x',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
374
        x.stop_gradient = False
375
        h_boot1 = layers.data(
Y
Yu Yang 已提交
376
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
377
            dtype='float32',
Y
Yu Yang 已提交
378 379 380
            name='h_boot1',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
381
        h_boot1.stop_gradient = False
382
        h_boot2 = layers.data(
Y
Yu Yang 已提交
383
            shape=[self.batch_size, self.input_dim],
F
fengjiayi 已提交
384
            dtype='float32',
Y
Yu Yang 已提交
385 386 387
            name='h_boot2',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
388
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
389

390
        rnn = layers.StaticRNN(main_program=self.main_program)
Y
Yu Yang 已提交
391 392 393 394 395
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

396 397 398
            mem1 = layers.scale(x=h_pre1, scale=1.0, **self.p_info)
            mem2 = layers.scale(x=h_pre2, scale=1.0, **self.p_info)
            out = layers.sums(input=[mem1, x_t, mem2], **self.p_info)
Y
Yu Yang 已提交
399 400 401 402 403 404

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
405 406


407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
        def __init__(self, input_shape, output_shape):
            super(RecurrentOpNoMemBootTest.PySimpleRNN4, self).__init__(
                input_shape, output_shape)
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

        self.data_field = {"x"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape,
                                                            self.output_shape)
Y
Yu Yang 已提交
449
        self.output = layers.mean(self.create_rnn_op(), **self.p_info)
450
        print(self.main_program)
451 452 453 454

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
F
fengjiayi 已提交
455
            dtype='float32',
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
            name='x',
            append_batch_size=False,
            **self.p_info)
        x.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
            mem = layers.elementwise_add(x=mem_pre, y=x_t, **self.p_info)
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


Y
Yan Chunwei 已提交
472 473
if __name__ == '__main__':
    unittest.main()