train.py 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import numpy
import sys

TRAIN_FILES = ['train.recordio']
TEST_FILES = ['test.recordio']

DICT_DIM = 89528

# embedding dim
emb_dim = 128

# hidden dim
hid_dim = 128

# hidden dim2
hid_dim2 = 96

# class num
class_dim = 2


def network_cfg(is_train, pass_num=100):
    with fluid.unique_name.guard():
        train_file_obj = fluid.layers.open_files(
            filenames=TRAIN_FILES,
            pass_num=pass_num,
            shapes=[[-1, 1], [-1, 1]],
            lod_levels=[1, 0],
            dtypes=['int64', 'int64'],
            thread_num=1)

        test_file_obj = fluid.layers.open_files(
            filenames=TEST_FILES,
            pass_num=1,
            shapes=[[-1, 1], [-1, 1]],
            lod_levels=[1, 0],
            dtypes=['int64', 'int64'],
            thread_num=1)

        if is_train:
            file_obj = fluid.layers.shuffle(train_file_obj, buffer_size=1000)
        else:
            file_obj = test_file_obj

        file_obj = fluid.layers.double_buffer(
            file_obj,
            name="train_double_buffer" if is_train else 'test_double_buffer')

        data, label = fluid.layers.read_file(file_obj)

        emb = fluid.layers.embedding(input=data, size=[DICT_DIM, emb_dim])

        # sequence conv with window size = 3
        win_size = 3
        conv_3 = fluid.nets.sequence_conv_pool(
            input=emb,
            num_filters=hid_dim,
            filter_size=win_size,
            act="tanh",
            pool_type="max")

        # fc layer after conv
        fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)

        # probability of each class
        prediction = fluid.layers.fc(input=[fc_1],
                                     size=class_dim,
                                     act="softmax")
        # cross entropy loss
        cost = fluid.layers.cross_entropy(input=prediction, label=label)

        # mean loss
        avg_cost = fluid.layers.mean(x=cost)
        acc = fluid.layers.accuracy(input=prediction, label=label)

        if is_train:
            # SGD optimizer
            sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.01)
            sgd_optimizer.minimize(avg_cost)

        return {
            'loss': avg_cost,
            'log': [avg_cost, acc],
            'file': train_file_obj if is_train else test_file_obj
        }


def main():
    train = fluid.Program()
    startup = fluid.Program()

    with fluid.program_guard(train, startup):
        train_args = network_cfg(is_train=True)

    test = fluid.Program()

    with fluid.program_guard(test, fluid.Program()):
        test_args = network_cfg(is_train=False)

    # startup
    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place=place)
    exe.run(startup)

    train_exe = fluid.ParallelExecutor(
        use_cuda=True, loss_name=train_args['loss'].name, main_program=train)

    fetch_var_list = [var.name for var in train_args['log']]
    for i in xrange(sys.maxint):
        result = map(numpy.array,
                     train_exe.run(fetch_list=fetch_var_list
                                   if i % 1000 == 0 else []))
        if len(result) != 0:
            print 'Train: ', result

        if i % 1000 == 0:
            test_exe = fluid.ParallelExecutor(
                use_cuda=True, main_program=test, share_vars_from=train_exe)
            loss = []
            acc = []
            try:
                while True:
                    loss_np, acc_np = map(
                        numpy.array, test_exe.run(fetch_list=fetch_var_list))
                    loss.append(loss_np[0])
                    acc.append(acc_np[0])
            except:
                test_args['file'].reset()
                print 'TEST: ', numpy.mean(loss), numpy.mean(acc)


if __name__ == '__main__':
    main()