elementwise_add_op.cu 8.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
17 18
#include "paddle/fluid/operators/reduce_ops/reduce_functor_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
19
#include "paddle/fluid/platform/complex.h"
K
Kexin Zhao 已提交
20
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
21 22

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
23
namespace plat = paddle::platform;
G
gongweibao 已提交
24

25 26 27
namespace paddle {
namespace operators {

28
template <typename T>
29 30 31 32
class ElementwiseAddKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
33 34
    std::vector<const framework::Tensor*> ins;
    std::vector<framework::Tensor*> outs;
35 36 37 38
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();

    int axis = PackTensorsIntoVector<T>(ctx, &ins, &outs);
39
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
40
        cuda_ctx, ins, &outs, axis, AddFunctor<T>());
41 42 43
  }
};

44
template <typename T>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
static __global__ void SimpleElemwiseAddGradCUDAKernel(
    const T* __restrict__ dout, int size, int vec_size, T* dx, T* dy) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = gridDim.x * blockDim.x;
  int loop = size / vec_size;
  int remainder = size % vec_size;
  const float4* dout_vec = reinterpret_cast<const float4*>(dout);
  float4* dx_vec = reinterpret_cast<float4*>(dx);
  float4* dy_vec = reinterpret_cast<float4*>(dy);
  float4 tmp_loop;

  for (int i = tid; i < loop; i += stride) {
    tmp_loop = dout_vec[i];
    dx_vec[i] = tmp_loop;
    dy_vec[i] = tmp_loop;
  }
61

62 63 64 65 66 67 68 69 70
  if (tid == loop && remainder != 0) {
    T tmp_rem;
    while (remainder) {
      int idx = size - remainder;
      remainder--;
      tmp_rem = dout[idx];
      dx[idx] = tmp_rem;
      dy[idx] = tmp_rem;
    }
71 72 73
  }
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
default_elementwise_add_grad(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y,
                             const framework::Tensor* out,
                             const framework::Tensor* dout,
                             framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  auto* dout_data = dout->data<T>();

  // dx
  if (dx != nullptr) {
    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    if (dx->dims() == dout->dims()) {
      if (dx_data != dout_data) {
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dx);
      }
    } else {
      // For inplace strategy, dx will be stored in addr of dout, which makes
      // the result of dy wrong.
      if (dx->IsSharedBufferWith(*dout)) {
        dx->clear();
        dx->mutable_data<T>(x->dims(), ctx.GetPlace());
      }
      std::vector<int> reduce_dims = GetReduceDim(x->dims(), out->dims(), axis);
      gpuStream_t stream = ctx.cuda_device_context().stream();
      TensorReduceFunctorImpl<T, T, CustomSum>(*dout, dx, reduce_dims, stream);
    }
  }
  // dy
  if (dy != nullptr) {
    auto* dy_data = dy->mutable_data<T>(ctx.GetPlace());
    if (dy->dims() == dout->dims()) {
      if (dy_data != dout_data) {
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dy);
      }
    } else {
      std::vector<int> reduce_dims = GetReduceDim(y->dims(), out->dims(), axis);
      gpuStream_t stream = ctx.cuda_device_context().stream();
      TensorReduceFunctorImpl<T, T, CustomSum>(*dout, dy, reduce_dims, stream);
    }
  }
}

124 125 126
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
127 128 129 130 131
elementwise_add_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
  auto* dy_data = dy->mutable_data<T>(ctx.GetPlace());
  auto* dout_data = dout->data<T>();
  if (dx_data == dout_data && dy_data != dout_data) {
    VLOG(4) << "Special case when dx_data is the same as dout_data, "
               "only need copy dout to dy";
    framework::TensorCopy(
        *dout, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dy);
  } else if (dx_data != dout_data && dy_data == dout_data) {
    VLOG(4) << "Special case when dy_data is the same as dout_data, "
               "only need copy dout to dx";
    framework::TensorCopy(
        *dout, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dx);
  } else if (dx_data != dout_data && dy_data != dout_data) {
    auto size = x->numel();
    int vec_size = max(static_cast<int>(sizeof(float4) / sizeof(T)), 1);
150
    dim3 block_size = dim3(ELEMENTWISE_BLOCK_SIZE, 1);
151
    dim3 grid_size =
152 153
        dim3(((size + vec_size - 1) / vec_size + ELEMENTWISE_BLOCK_SIZE - 1) /
                 ELEMENTWISE_BLOCK_SIZE,
154 155 156 157 158 159 160 161 162 163 164
             1);
    SimpleElemwiseAddGradCUDAKernel<
        T><<<grid_size, block_size, 0,
             ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
        dout->data<T>(), size, vec_size, dx->mutable_data<T>(ctx.GetPlace()),
        dy->mutable_data<T>(ctx.GetPlace()));
  } else {
    VLOG(4) << "Special case when dy_data is the same as dout_data, "
               "and dx_data is the same as dout_data, do not need "
               "any operator";
  }
165 166 167 168
}

}  // namespace operators
}  // namespace paddle
Q
QI JUN 已提交
169
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
170 171 172
    elementwise_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
K
Kexin Zhao 已提交
173
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
174
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>,
175 176
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
177
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
178
    elementwise_add_grad,
K
Kexin Zhao 已提交
179 180 181
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int>,
C
chengduo 已提交
182
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int64_t>,
183
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, plat::float16>,
184 185 186 187
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
188 189 190 191 192
REGISTER_OP_CUDA_KERNEL(
    elementwise_add_grad_grad,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, int>,
193
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
194
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
195
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext,
196
                                        plat::complex<float>>,
197
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext,
198
                                        plat::complex<double>>);
199 200 201 202 203 204

REGISTER_OP_CUDA_KERNEL(
    grad_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
205
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>,
206 207
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex<double>>);